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ABSTRACT 

 

We consider a model of customer's choice between companies producing a single good that 

varies only in price and quality. The quality (durability) of the good is specified exogenously 

while the price is determined endogenously. Customers can purchase one unit of the good from 

any of the companies. Each company serves customers using a single-server queueing model 

with a first-come-first-serve queue. The customer incurs a waiting cost per unit time. After 

receiving the good, the customer consumes it which takes a random time with a distribution 

determined by the quality of the good purchased. After consumption, the customer again 

purchases another unit of the good. It is assumed that the queues are not visible to the customers.  

The customers select companies so that their expected expenditure per unit time is minimized. 

 

INTRODUCTION 

 

We will consider how price and quality affect consumer choice.  We assume a closed system of 

consumers each of who are in one of two states: waiting to purchase a good at a particular 

company or consuming the good that was recently purchased.  There are a number of competing 

firms who sell similar goods that differ only in price and durability.  The durability of goods is 

externally specified but the companies are free to choose their own prices in an attempt to attract 

more customers.  The more customers that choose to purchase from a company the more the 

waiting line will grow.  Consumers prefer low cost, long-lasting products but also prefer not to 

wait a long time in queue.  A mixed strategy equilibrium will be found that determines the 

proportion of customers choosing each of the companies and will determine the prices that each 

company will charge. 

 

THE MODEL 

 

Consider n companies that produce an interchangeable product.  The quality of the product of 

company k is measured by its lifetime before it needs replacement.  This time is given by an 

exponential random variable with mean qk .  This mean is considered a value that the company 

has chosen, given its manufacturing capabilities and will never change.  The company will 
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charge the consumer a price  Pk  per unit while having given fixed and variable costs of  f k  and 

 v k  respectively.  The value of  Pk  is to be determined.  

 

Initially, N consumers choose a company and purchase one unit of their good.  Each company 

serves customers using a single-server queueing model with a first-come-first-serve queue (see 

Figure 1).  The customer while waiting in the queue and while being served incurs a waiting cost 

per unit time w.  A utility of   per unit time is obtained while consuming the product.  We 

assume for convenience that all companies have the same service capacity.  Therefore the service 

time is assumed exponentially distributed with constant mean .  After receiving the good, the 

customer consumes it during the random time with mean qk .  After consumption, the customer 

again purchases another unit of the good that can be chosen from any of the companies.  It is 

assumed that the queues are not visible to the customers.  The information available to the 

customer at this point is the current prices charged by each company and the given set of  {qk} . 

The customers choose a company so that their future discounted expected cost per unit time is 

minimized.  Formally let   ( p1,..., pn )  be a probability vector representing a mixed strategy over 

the choice of company by a customer.  Since the customers are assumed homogeneous we 

restrict consideration to a symmetric Nash equilibrium. 
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RELATED WORK 

 

The earliest related work was undertaken by Naor (1969).  He employed a queuing model with a 

cost structure to study the effect of tolls on customers.  Both Luski (1976) and Levhari and Luski 

(1978) were among the first to model competition between service providers.  In their problem 

settings customers chose their service provider on the basis of a full price where the full price 

had two pieces: a fixed piece and a piece that depended on the expected waiting time multiplied 

by a waiting cost rate.  Loch (1991) considered a variant of the Luski (1976) model and was the 



 

 

first to consider a problem setting with general servers, i.e. he went beyond studying the basic 

M/M/1 queueing model.  Reitman (1991) generalized the results of Levhari and Luski (1978).  

Sattinger (2002) considered a special case of our model. He considered firms with identical 

quality goods. In equilibrium therefore the companies charged identical prices and customers 

were indifferent about which company to patronize.  Chen and Wan (2003) also studied the 

problem settings of Luski (1976) and Levhari and Luski (1978) and showed that a price 

equilibrium exists for the basic model with a uniform cost rate.  They showed however that the 

Nash equilibrium may fail to be unique.  Christ and Avi-Itzhak (2002) showed that asymmetric 

Nash equilibrium of service rate pairs may arise when a customer arriving to empty queues is 

randomly assigned to a service provider.  Armony and Haviv (2003) studied the situation where 

customers belong to one of two classes each with a different waiting cost parameter.  The book 

by Hassin and Haviv (2003, chapter 7) contains an excellent overview and analysis of the 

previous work in this area.  Most recently, Veeraraghavan and Debo (2009, 2011) showed how 

queue length can signal to a customer information about the quality of a service provider’s 

offering.  In the case where there is no waiting cost they found customers join the longest queue 

(Veeraraghavan and Debo, 2009).  On the other hand when there are waiting costs, they found 

the equilibrium queue joining strategy is a complex function of both queue lengths 

(Veeraraghavan and Debo, 2011) 

 

In this paper we consider an extension of the Sattinger model to heterogeneous companies while 

still assuming homogenous customers.  The fact that we have a closed system with a fixed 

number of customers distinguishes it from all other models surveyed by Hassin and Haviv 

(2003).  The outline of this paper is as follows.  In the next section we use a Markov decision 

process to describe the decisions in the stochastic environment.  The following two sections of 

the paper continue the analysis.  The last section of the paper summarizes the results and outlines 

directions for future research. 

 

THE MARKOV DECISION PROCESS 

 

Start the decision making in the model at some arbitrary time 0.  Suppose at some future time t, a 

customer has purchased a unit of the good and is currently consuming it.  Let   VG (t)  be the 

expected discounted value over an infinite future of a customer having the good. Similarly, let 

  VNG (t)  be the expected discounted value over an infinite future, starting from time t, of a 

customer without the good and currently waiting in the queue (in equilibrium it will not matter 

which queue you are in.). 

 

We assume that both the customers and the companies have used a given strategy for sufficient 

time so that the induced Markov process has reached a stationary distribution.  And since queues 

are unobservable, the process will continue to evolve toward a stationary distribution. 

Furthermore, we assume this given strategy used by the participants is the Nash equilibrium. 

Therefore we can refer to constants  VG  and  VG  as the Nash equilibrium values of   VG (t)  and  

  VNG (t)  for large t.  Furthermore, in the equilibrium,  VG  will not depend upon the current queue 

k. 

 



 

 

Define    k  1 qk  as the failure rate of good k.  Suppose, for convenience, we know that the flow 

of customers arrive at company k as a Poisson process with rate  k .  Assume r is the rate of 

discounting so that a payoff D that will be obtained at a time s in the future has a present value 

of e
rsD .  If s is a small time interval then this becomes  [1 rt]D  o(t) .  

Good (G) No Good (NG)

(σ - λk)Δt

µkΔt

1 - µkΔt

1 - (σ - λk)Δt

Figure 2
 

Now consider a two-state continuous time Markov process with states G and NG (see Figure 2). 

Assume we have a consumer who is a customer of company k and never purchases from another 
company.  Customers alternate visits to the same M/M/1 queue with a consumption time.  

During a small time interval we will have either 0 or 1 transition.  If in state G, the transition rate 

to state NG is  k . If in state NG, we assume the consumer is in the queue of company k. The 

waiting time in the system including completing service is exponential (Ross, 1993, p. 362) with 

mean  (  k )1 .   Therefore the transition matrix over a time interval  t  is, to within 

order  o(t) : 

 

  

G NG

G

NG

1  kt  kt

(   k )t 1 (   k )t











 (1) 

If a customer is currently in state G at time t, then after time t , the customer will either 

transition to NG or stay in G (assume the transition is at the end of the time t ).  So in either case 

the customer will accumulate a utility of  t  from consumption while in state G.  A customer’s 

expected future payoff (payments received at time  t  t ) 

is
  
(1  kt) VG (t  t) t    kt VNG (t  t) t  .  Multiplying this expression by  e

rt  

will discount this back to the present time t. The result must equal   VG (t) , the value of being in 

the current state (we suppress a dependence on t in the  VG  notation since the stationary case is 

assumed).  Then we have: 
  
VG  (1 rt) (1  kt) VG t    kt VNG t   o(t)  

After some simplification we can divide by  t  and then let   t  0 . This yields the following 

relationship between  VG  and  VNG : 

   rVG    k (VNG VG )  (2) 

Similarly, if a customer is currently in state NG then at the end of the time interval  t  a 

customer might stay in NG or transition to state G.  If a customer moves to G, then the customer 



 

 

will pay  Pk  upon exiting the queueing system.  In any case, the customer will incur a waiting 

cost of  wt .  After discounting, we obtain the expression 

  
VNG  (1 rt) (1 (  k )t) VNG  wt   (  k )t VG  wt  Pk

   o(t)  

Proceeding as with the equation for  VG , this reduces to: 

   rVNG  w (  k )(VG VNG  Pk )  (3) 

From (2),   VG  (  kVNG ) (r  k ) . This can be substituted into (3) to obtain an expression for 

 VNG : 

 

  

VNG 
(  k )[  Pk (r   k )] w(r   k )

r(r   k   k )
 (4) 

From this we can obtain an equation for  VG : 

 

  

VG 
r(r   k   k )  k (  k )   k (r   k )[(  k )Pk  w]

r(r   k )(r   k   k )
 

which can be simplified to 

 

  

VG 


r

 k[  w (  k )Pk ]

r(r   k    k )
 (5) 

 

PARALLEL QUEUES 

 

At any given time let G be the total number of customers which have the good and Q be the 

number in a queue waiting to obtain the good.  Then  N  G Q .  Further, we can split G into 

the expected number holding each good: 
  
G  Gkk1

n
 .  Likewise, 

  
Q  Qkk1

n
  where  Qk  is the 

expected number in the queue k (including the one in service).  The expected number in an 

M/M/1 queueing system is   Qk  k (  k ) .  The process of consuming the good is a self-

service or M/M/ queue. The output rate of queue k is   k  which is thus the input rate for the 

self-service queue for those with good k.  Therefore,  Gk  k  k .  This assumes the 
 
 k  are 

fixed when, in fact, they actually are determined by the collective decisions of the customers. 

  

Let   ( p1,..., pn )  be a probability distribution such that  pk  is the probability that a customer 

chooses company k.  We need to solve for   ( p1,..., pn ) .  In equilibrium, with N very large, we can 

view the system as n subsystems of queues in parallel that do not interact. Then there will be 

 M k  customers in queue k,  M k  Npk . Therefore,  

   M k  Gk Qk  k k  k (  k )  (6) 

From (6), 

  

M k 
 k (   k )   k k

 k (   k )
.  This is a quadratic in   k  which can be solved: 

 
  
k  0.5[  (M k 1) k ] 0.5 [  ( M k 1) k ]2  4M k k  (7) 

(We take the negative sign in the quadratic equation or otherwise  k    and the queue length 

grows without bound.)  This is equivalent to Sattinger's equation (11). 



 

 

 

In our model we have n classes of customers since the queues are non-interacting.  Each 

customer class will determine a  VNG  value given by (4).  Each customer will try to maximize this 

value (equivalently  VG ; one determines the other).  This will be accomplished by changing the 

strategy   ( p1,..., pn ) .  The result is that each company will be equally attractive in the sense that 

all the  VNG  values are the same (not that customers choose each company with equal 

probability).  So denote this common value of   VNG  for each queue as V.  Now we can use (4) to 

solve for the arrival rate to queue k: 

 

  

 k   
(w rV )(r   k )

  Pk (r   k )  rV
 (8) 

This is the same as Sattinger's equation (12).  The denominator must be positive so this places an 

upper bound on possible values of V, namely:   V  [  (r  k )Pk ] r .  

 

For any given V we can find the required   { k}  from (8). Using them in (6) we obtain: 

 

  

pk 
 k (   k )   k k

N k (   k )
 (9) 

From this result we require 
  

pk  1
k1

n
 . This places a restriction on the   { k}  which means V can 

be determined in this manner (although there may not always be a solution). 

 

This is different from Sattinger's model since we are now assuming a large but finite N.  This is 

only an approximation since this assumption conflicts with the statement that all n queues 

operate independently. 

 

THE TANGENT LINE 

 

In equation (8), fix the customer's utility at V and find  dPk dk  along the constant utility curve. 

Taking the derivative of each side of  (8) yields: 

 

  

dPk

d k

 
[  (r   k )Pk  rV ]2

(w rV )(r   k )2
 (10) 

Now the company profit function is   k  (Pk  vk )k  f k .  Fix this profit for various   (Pk ,k )  

values and find   dPk dk  along this isoprofit curve.  Then 

  

 k

 k

 Pk   k

dPk

d k

 vk  0  and so 

  dPk dk  (Pk  vk ) k .  At the equilibrium point the  dPk dk  for the customer and for the 

company must be equal. This yields the relation: 

 

  

Pk  vk 
k[  (r   k )Pk  rV ]2

(w rV )(r   k )2
 (11) 

We can now substitute the value of V from  (4) into (11) to give us  Pk  as a function only of   k , 

plus constants: 



 

 

  

  

Pk  vk  k

(  w)  vk (r   k )

(  k )2  (r   k )
 (12) 

This is Sattinger's (13). 

 

As N increases, the value of V (same for all queues) decreases since everything is getting more 

congested. Eventually N will get so large that   V  0 . This is the maximum capacity of the 

system.  (We could put more customers into the system but then   V  0  and they would prefer, if 

possible, to exit the system.) 

 

To find the characteristics of the system at the maximum capacity, set    V  0  in (8) and (11) and 

we find that 

  

 k   
w(r   k )

  Pk (r   k )
 and 

  

Pk  vk 
k[  (r   k )Pk ]2

w(r   k )2
. 

Substitute the first equation into the second to obtain, after some algebra,  

 

  

Pk 


r   k


w[  vk (r   k )]

 (r   k )
 (13) 

and  

 

  

 k   
w(r   k )

  vk (r   k )
 (14) 

at the maximum capacity. The corresponding   {pk} now can be found from (9). This will just say 

that the   {pk} are proportional to the number in each "parallel system." 

 

SUMMARY AND FUTURE RESEARCH 

 

In paper we consider a model of customer's choice between companies producing a single good 

that varies only in price and quality.  We assume the quality (durability) of the good is specified 

exogenously while the price is determined endogenously.  A mixed strategy equilibrium is found 

that determines the proportion of customers choosing each of the companies and the prices that 

the companies will charge.  Additional work on this problem will involve undertaking a 

numerical study that will lead to a comparison with the results found in Sattinger (2002).  

Furthermore, future research needs to investigate the “small N” case, i.e. where the number of 

customers is few in number.  It would also be interesting to relax the assumption that the queues 

are not visible to customers as very little research has been done on this front (see Hassin and 

Haviv (2003, chapter 8)). 
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