
 627

Confronting the Performance Issues Related to Dynamic Web Technology

John A. Hines

Arkansas State University P.O. Box 239 State University Arkansas 72467
1-870-972-3416 * 1-870-236-4730

John.Hines@smail.astate.edu

ABSTRACT

Many who develop dynamic web applications do so with information from biased sources, such
as the open source community or those who favor the more familiar Microsoft brand
technologies. Many assume that there is no difference in overall performance or suitability
among the various dynamic web technologies. Different dynamic web applications were
evaluated through benchmarking on different machine configurations to determine the best
configuration performance-wise. The results make it clear that dynamic web technologies that
were developed for specific platforms tend to perform better within their native environments.
While these technologies may be capable of use under non-native environments, this would not
be ideal. The decision concerning what dynamic web technology to use is ultimately dependant
of the needs of the web application and the cost involved.

INTRODUCTION

We have moved from a virtual military environment in the days of ARPAnet to today’s huge
world of retail sales sites, information portals, educational resource repositories, and personal
web spaces. When the Internet transitioned from the government to the public domain the
opportunity for technologies to develop also evolved. Throughout the mid to late 1990s and on
into the 21st century, the World Wide Web has evolved into a mass marketplace for information
and for retail businesses. Deciding which technologies to use when building a web presence has
thus become a more difficult decision as more of these technologies have become available.

Many web technologies, meaning the hardware, software (including the operating system, web
server, scripting engine, database etc.), are available at a wide variety of costs. Available
hardware consists of many preconfigured machines, such as the Dell PowerEdge, HP Pavilion,
and the IBM Blade servers. As far as operating systems are concerned, SUN Solaris 10, UNIX,
Linux and it’s many distributions (for example, RedHat Enterprise Linux, Novell SuSE
Enterprise Linux, Mandrake, and CentOS 4.0) and the different flavors of Microsoft Windows
(such as Windows 2000 Advanced Server and Windows 2003 Enterprise Server) are the most
popular and are available at costs ranging from nothing to many thousands of dollars. To
compliment these operating systems, a number of web server technologies are available, with
Oracle Application Server, Apache, and Microsoft Internet Information Server comprising nearly
100% of the market. These web servers will work in conjunction with the vast array of scripting
engines available such as Cold Fusion, the common gateway interface (CGI or FastCGI), Perl,
Python, Java Server Pages (JSP), Java Servlets, ASP.NET, and classic ASP. These scripting
engines are in turn able to interact with database technologies such as Oracle, MySQL,
PostgreSQL, Microsoft SQL Server, and even Microsoft Access.

 628

Previous research into the vast collection of web technologies has been thus far narrow in its
focus. Some has targeted web server technologies such as Microsoft Internet Information Server
and the Apache Web Server (Apache). Other research has been aimed toward specific
programming languages (ASPMaker) or database performance (Huang). Furthermore, some of
the prior research into this topic has been biased by corporate sponsors of that research. In one
article called “Lies, Damn Lies and Benchmarks” the author tells the story about the Mindcraft
benchmarking incident (Whittman). Mindcraft reported that a Microsoft Windows NT system
running Microsoft IIS was 3.7 times faster than an Apache Web Server running under the Linux
operating system (Welcome to Mindcraft). This research was funded by Microsoft and the
reported results have come under scrutiny.

The continuing developments in web technologies dictate the need for a broad approach to
comparative studies within this field. While, on the surface, some of this research may seem to
be common sense to the Information Technology professional or educator, the results should be
useful to many small to midsize firms. They need to know which, if any, web technology
platform will perform best, in spite of various contradictory claims by industry participants. Thus
it will be assumed initially that all web server and web language technologies are in essence the
same. That is, there are no significant differences in overall performance or suitability among the
various web technologies. The goal of this research is to prove otherwise through performance
benchmarking and comparison of those benchmarks to find which technologies perform best.

METHODS AND MATERIALS

For this research it was decided to concentrate upon Active Server Pages (ASP) (Microsoft
Office Developer Center) and Personal Homepage (PHP) (PHP Hypertext Preprocessor). Each of
those web languages were processed upon Microsoft IIS version 6 as well as Apache Web Server
versions 1.3.29 and 2.0.54. Since the schedule for this research was limited the technologies used

were chosen on the basis of popularity and functionality (ServerWatch). According to Security

Figure 1: Assessing needs of web applications.

 629

Space (Security Space), a web based organization provided by a company called E-Soft Inc.; the
Apache Web Server enjoys a dominant 72.1% share of the web server market while Microsoft
Internet Information Server has a share of 22.26%; other web server technologies have a 5.63%
share of the current web server market (Web Server Survey). Figure 1 outlines the process for
considering the dependent technologies addressed in developing web applications.

This format was followed to list what is required to perform the data collection. For the
processing of ASP and PHP pages, PHP 5.0.4 was installed as well as Sun Microsystems ASP
ONE server (Sun Java System Active Server Pages 4.0). ASP ONE is a server application used
to process Active Server Pages in the non-native Apache environment. The content of the PHP
pages were generated with a trial version of a program called PHPMaker (PHPMaker). The
content of the ASP pages were generated with a trial version of a program called ASPMaker
(ASPMaker). Both of these programs generate dynamic pages that have the ability to query and
edit a database table.

The benchmarking of static web technologies was bypassed due to vast amounts of past research
(Shiloh Consulting) on those technologies. Concentrating instead on dynamic web content, as is
used in many ecommerce and information sites today, database software was acquired. For this
purpose, MySQL (MySQL) and Microsoft Access 2003 (Microsoft Office Online) were used to
store data. MySQL is a database server that runs separately in a process as opposed to Microsoft
Access databases which reside in files with the .mdb extension. The construction of the databases
was simple one line entries into a table with generic information. A simple first name, last name,
email address, and identification number were stored. A simple database can be made for
Microsoft Access 2003 by entering the data by hand in MS Access. Otherwise, a converter
program such as MySQL to Access (Huang) can be purchased.

A Gateway brand server was acquired equipped with a two 1GHz processors and 512MB
Random Access Memory (RAM). This server was configured to perform in a dual boot capacity
running Windows Server 2003 Enterprise (Microsoft Windows Server System) as well as SuSE
Linux Enterprise Server 9 (SLES for the remainder of this document) (SuSE Linux Enterprise
Server 9). JBlitz Professional 4.2 (JBlitz Professional) was used to perform the actual
benchmarking of the web applications. Because JBlitz Professional is a Java application, the Java
Runtime Environment (JRE) (Java Runtime Environment) was installed on both operating
systems used. Both operating systems were configured to run the web server software and
database server automatically upon system start up.

JBlitz Professional was configured to access each of the web applications generated by
PHPMaker and ASPMaker. This configuration consisted of a test case of 7 virtual users, each
representing a person requesting the application to load in their favorite web browser. Every 200
milliseconds one of the virtual users would send a request to the web application for a
dynamically generated page. JBlitz Professional was configured to stop processing the page
requests after 10,000 successful responses. If an error occurred, the benchmarking utility would
add an extra request to the program queue. This same benchmark configuration was used to test
the following web site or a variety of configurations consisting of PHP 5.0.4, ASP, MySQL,
Microsoft Access 2003, Apache 2.0.54, or Microsoft IIS 6.0 running under either the Microsoft
Windows Server 2003 or the Suse Enterprise Linux Server operating systems. Each

 630

configuration was tested with JBlitz Professional separately and the resulting data was then
entered into a spread sheet program for comparison later on.

Codes:
 Languages:
 PHP: PHP 5.0.4
 ASP: Active Server Pages (ASP)
 Web Server:
 Ap: Apache
 IIS: MS Internet Information Services
 Operating System:
 Win: Windows 2003 Enterprise Server
 SUSE: SuSE Linux Enterprise Server
 Database:
 Acc: Microsoft Access 2003
 My: MySQL

Figure 3: The above code listing refers to the configuration types used within Figures 4-12 below.

RESULTS

During the course of these tests, a number of errors were encountered and these errors constitute
a measure of performance. The common error amongst the entire set of different configuration

Error Count

91

15

0

10

0 0
4

0 0 0
0

10

20

30

40

50

60

70

80

90

100

PHP/A
p/M

y/W
in

PHP/IIS
/M

y/W
in

ASP/IIS
/M

y/W
in

ASP/A
p/M

y/W
in

ASP/A
p/A

cc
/W

in

PHP/A
p/A

cc
/W

in

PHP/IIS
/A

cc
/W

in

ASP/IIS
/A

cc
/W

in

PHP/A
p/M

y/S
USE

ASP/A
p/M

y/S
USE

Configuration Type

N
um

be
r o

f E
rr

or
s

Figure 4: This graph shows the number of errors encountered during the course of testing

each configuration type. Each configuration type processed until 10,000 successful page hits.

types was address related. The error message produced by JBlitz Professional was “The
connection could not be established – Address already in use”. Ninety one errors were observed
when using PHP with the Apache Web Server under Windows 2003 using the MySQL database.
Fifteen more errors were observed when using PHP with the Microsoft IIS6 under Windows
2003 using the MySQL database. Ten more errors were encountered when using ASP with the
Apache Web Server under Windows 2003 using the MySQL database. Only four errors occurred
when using PHP with Microsoft IIS6 under Windows 2003 using Microsoft Access 2003 to
retrieve dynamic data. The other configurations tested did not produce error. These errors are
summarized in Figure 4.

 631

Each of the benchmarked configuration types performed at different speeds. For each of the
configurations 10,000 completed transactions were processed (net of the number of errors plus
10,000 successful hits). As is illustrated below in Figure 5, benchmark test times varied from 10
minutes and 10 seconds for PHP running on the Apache Web Server in a Linux environment to
15 minutes and 57 seconds for PHP running under Microsoft IIS on Windows 2003 Enterprise
Server.

Run Time (mm:ss)

10:43

14:49

10:27 10:40
11:20 11:26

15:57

11:24

10:10 10:21

0:00

2:24

4:48

7:12

9:36

12:00

14:24

16:48

PHP/A
p/M

y/W
in

PHP/IIS
/M

y/W
in

ASP/IIS
/M

y/W
in

ASP/A
p/M

y/W
in

ASP/A
p/A

cc
/W

in

PHP/A
p/A

cc
/W

in

PHP/IIS
/A

cc
/W

in

ASP/IIS
/A

cc
/W

in

PHP/A
p/M

y/S
USE

ASP/A
p/M

y/S
USE

Configuration Type

Ti
m

e
(m

m
:s

s)

Figure 5: This graph outlines the length of time each configuration type took to process 10,000 hits.

The various configuration types returned different download (i.e., response) sizes. That is, the
headers for each of the different scripting environments returned varied in size. As Figure 6
illustrates, PHP 5.0.4 pages that ran under both the Apache Web Server and Microsoft IIS6 and

Total Bytes Downloaded

4525

4029

5488

6572 6552

4394

3907

5469

3652

7197

0

1000

2000

3000

4000

5000

6000

7000

8000

PHP/A
p/M

y/W
in

PHP/IIS
/M

y/W
in

ASP/IIS
/M

y/W
in

ASP/A
p/M

y/W
in

ASP/A
p/A

cc
/W

in

PHP/A
p/A

cc
/W

in

PHP/IIS
/A

cc
/W

in

ASP/IIS
/A

cc
/W

in

PHP/A
p/M

y/S
USE

ASP/A
p/M

y/S
USE

Configuration Type

B
yt

es
 D

ow
nl

oa
de

d

Figure 6: This graph illustrates a difference in download size among the
different configuration types benchmarked.

 632

using Microsoft Access 2003 files for data storage downloaded significantly smaller amounts of
data compared to the other configuration types. The other configurations performed consistently
suggesting the header information returned doesn’t deviate much in size. The abnormity in the
data set suggests an error in processing, however, JBlitz Professional didn’t produce any related
error messages.

Figure 8) shows average response time in seconds, which reflects how long, on average, it takes
to receive each response. The time was measured from when a connection had been made to
when the entire response was received. This is also a reflection of all of the download events that
occurred whether or not they produced error. Longer connection times mirror resulting averages
for response time, which in turn reflects overall response time (Figure 5).

Response Time (seconds)

0.0240

0.2440

0.0130
0.0250

0.0700 0.0720

0.3130

0.0730

0.0070
0.0180

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

PHP/A
p/M

y/W
in

PHP/IIS
/M

y/W
in

ASP/IIS
/M

y/W
in

ASP/A
p/M

y/W
in

ASP/A
p/A

cc
/W

in

PHP/A
p/A

cc
/W

in

PHP/IIS
/A

cc
/W

in

ASP/IIS
/A

cc
/W

in

PHP/A
p/M

y/S
USE

ASP/A
p/M

y/S
USE

Configuration Type

Se
co

nd
s

Figure 8: This graph shows the average response time from connection to the
completion of downloading data.

357

237

362

495

360

225 232

360

140

358

238 232

362 362 360

225 225

360

140

358

0

50

100

150

200

250

300

350

400

450

500

Bytes

Configuration Type

Min./Max. Response Size

Min Response Size Max Response Size

Min Response Size 238 232 362 362 360 225 225 360 140 358
Max Response Size 357 237 362 495 360 225 232 360 140 358

PHP/Ap/M
y/Win

PHP/IIS/M
y/Win

ASP/IIS/M
y/Win

ASP/Ap/M
y/Win

ASP/Ap/A
cc/Win

PHP/Ap/A
cc/Win

PHP/IIS/A
cc/Win

ASP/IIS/A
cc/Win

PHP/Ap/M
y/SUSE

ASP/Ap/M
y/SUSE

Figure 9: The data shown in this graph represents a comparison between

minimum and maximum response data in bytes.

 633

During the benchmarking, data downloaded varied in size. Each response delivered to each
virtual user was calculated and then averaged. The data summarized in Figure 9 shows
differences in minimum and maximum response sizes. While most of the responses were
consistent, some response data collected did show signs of variation within a few configuration
types. The data does not reflect any correlation to errors in data consistency or network overload.

In Figure 10, the average length of a response is shown. This data includes successful hits as well
as any errors encountered. The mean response size shows direct correspondence with the total of
downloaded data depicted in Figure 6.

Mean Response Size

238 236

362 362 360

225 225

360

140

358

0

50

100

150

200

250

300

350

400

PHP/A
p/M

y/W
in

PHP/IIS
/M

y/W
in

ASP/IIS
/M

y/W
in

ASP/A
p/M

y/W
in

ASP/A
p/A

cc
/W

in

PHP/A
p/A

cc
/W

in

PHP/IIS
/A

cc
/W

in

ASP/IIS
/A

cc
/W

in

PHP/A
p/M

y/S
USE

ASP/A
p/M

y/S
USE

Configuration Type

B
yt

es
 o

f D
at

a

Figure 10: This graph shows the average length of a response for both errors and successful hits.

Response Size (Standard Deviation)

6.000

0.000 0.000

1.000

0.000 0.000 0.000 0.000 0.000 0.000
0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

PHP/A
p/M

y/W
in

PHP/IIS
/M

y/W
in

ASP/IIS
/M

y/W
in

ASP/A
p/M

y/W
in

ASP/A
p/A

cc
/W

in

PHP/A
p/A

cc
/W

in

PHP/IIS
/A

cc
/W

in

ASP/IIS
/A

cc
/W

in

PHP/A
p/M

y/S
USE

ASP/A
p/M

y/S
USE

Configuration Type

B
yt

es
 o

f D
at

a

Figure 11: This graph shows the standard deviation in data length for all responses received

Figure 11 shows standard deviation in response length for all response headers received by each
virtual user. This data also reflects directly upon how many errors were received during the

 634

course of benchmarking each configuration type. These errors reflect traffic errors within the
local network and IP address translation errors encountered and reported in Figure 4.

CONCLUDING REMARKS

From the data gathered during the benchmarking of the two outlined web applications some
assumptions can be made. First, from the transport of data size and speed of the transaction
process it can be assumed that there is a direct benefit to accessing data from an outside source
through a direct file transfer rather than a connection to a database server. The connection to a
database server through whichever means, whether it is a Data Source Name (DSN) or direct
TCP/IP connection to the database server (DSN-less), takes extra steps to process. That is, it
creates more network traffic and overhead to connect to a database server than to access data
directly from a file. To solidify this assumption, more benchmarking should be performed related
to data access. There are many ways to import data into a web application. Data can be accessed
through text files, spread sheets, Microsoft Access files, and many different flavors of database
server such as Oracle 10g, PostgreSQL, Microsoft SQL Server, MySQL, and Sybase to name a
few.

It can also be assumed, secondly, that web application run times will vary according to error
rates. An error prone web application will take longer to render than one that is precisely
developed and used within the confines of well established technologies suited for the web
application. That is, and thirdly, a web application is better suited to the environment it was
developed for. For example, it would not be in a developer’s best interest to develop a web
application to run under a Linux environment and to have that web application depend upon a
Microsoft Access data file for its content. This type of configuration is currently not supported
by the environment. It is possible to develop such connectivity between Microsoft Access, the
Apache Web Server, and whichever scripting language is used. Why go through the trouble and
expense to develop that sort of connectivity when the alternative technology exists to make the
development easier in that scenario?

In this research, very basic web applications were generated using Active Server Pages (ASP)
and Personal Homepage (PHP). In order to further support these assumptions, the opportunity to
further investigate the issues related to dynamic web technologies presents itself. Further study
using more scripting languages and comparing more directly to each of the languages tested.
Investigation of the performance issues surrounding dynamic web technologies related to
different hardware configurations must be examined. This research was performed on a dual 1
GHz processor with 512MB RAM. Hardware that conforms to configurations used in today’s
web hosting provider organizations should be examined. The hardware used should be up to date
and current with the industry.

In closing, a final assumption can be made in a general sense. The needs of the web application
used will dictate the hardware, software, operating system, and web server technologies used. In
order to achieve the best performance possible native technologies need to be utilized. Using
native web technologies for precisely developed web applications will perform optimally as well
as incur the least expense in development and web hosting costs.

 635

ACKNOWLEDGEMENTS

Special thanks and appreciation is extended to Dr. John Seydel for his toleration of many
interruptions and annoyances. Thanks are also extended to Dr. Robyn Hannigan, Gail McDonald,
Betty Pulford, and Ruth Greenfield of the McNair Achievement Program for their continued
support throughout the course of this research. Last, but certainly not least, appreciation is
extended to Kris Williams and Todd Reed for their help in attaining the equipment needed to
perform these benchmarks.

This research was funded, in part, by the ASU McNair Achievement Program and by a grant from the US
Department of Higher Education (P217A0300001 to Hannigan and Sustich) and by the Department of Computer and
Information Technology, Arkansas State University.

REFERENCES

Apache HTTP Server Project. (n.d.). Retrieved Jun. 9, 2005, from HTTPD Web site:
http://httpd.apache.org/.

ASPMaker (n.d.). Retrieved Jun. 30, 2005, from ASPMaker Web site:

http://www.hkvstore.com/aspmaker/.

Huang, Z. (n.d.). MySQL to Access / Access to MySQL Converter. Retrieved Jun. 30, 2005,

from MySQL to Access / Access to MySQL Converter Web site:
http://www.fonlow.com/zijianhuang/dbconverter/index.html.

Java Runtime Environment. (n.d.). Retrieved Jun. 30, 2005, from Download Java 2 Platform,

Standard Edition, v 1.4.2 (J2SE) Web site: http://java.sun.com/j2se/1.4.2/download.html.

JBlitz Professional 4.2. (n.d.). Retrieved Jun. 30, 2005, from JBlitz Professional Home Web site:

http://www.clanproductions.com/jblitz/pro/.

Microsoft Office Developer Center. (n.d.). Retrieved Jun. 30, 2005, from Active Server Pages

Web site:
http://msdn.microsoft.com/office/understanding/frontpage/infocenter/asp/default.aspx.

Microsoft Office Online. (n.d.). Retrieved Jun. 30, 2005, from Access 2003 Home Page Web

site: http://office.microsoft.com/en-us/FX010857911033.aspx.

Microsoft Windows Server System. (n.d.). Retrieved Jun. 30, 2005, from Windows Server 2003

Home Web site: http://www.microsoft.com/windowsserver2003/default.mspx.

MySQL. (n.d.). Retrieved Jun. 30, 2005, from MySQL Web site: http://www.mysql.com.

PHP Hypertext Preprocessor. (n.d.). Retrieved Jun. 29, 2005, from the PHP Web site:

http://www.php.net/.

 636

PHPMaker (n.d.). Retrieved Jun. 30, 2005, from PHPMaker Web site:
http://www.hkvstore.com/phpmaker/.

SuSE Linux Enterprise Server 9. (n.d.). Retrieved Jun. 30, 2005, from SUSE LINUX Enterprise

Server Web site:
http://www.novell.com/products/linuxenterpriseserver/index.html?sourceidint=productsm
enu_sles.

Security Space. (n.d.). Retrieved Jul. 6, 2005, from Security Space Web site:

http://www.securityspace.com/sspace/index.html.

ServerWatch, (n.d.). Server Compare. Retrieved Jun. 26, 2005, from Server Compare:

Comparison of Apache and Microsoft IIS6 Web site:
http://www.serverwatch.com/stypes/compare/index.php/compare2_17755,18097.

Shiloh Consulting (1995, Nov). Performance Benchmark Comparison of UNIX Web Servers

Using API and CGI External Gateways: Netscape Communications Server 1.12 (with
NSAPI and with CGI), Open Market Non-Secure Webserver 1.1-eval, and NCSA httpd
version 1.4.2. Retrieved Aug 04, 2005, from
http://wp.netscape.com/comprod/server_central/performance_benchmarks.html.

Sun Java System Active Server Pages 4.0. (n.d.). Retrieved Jun. 16, 2005, from Sun Java System

Active Server Pages 4.0 Web site: http://www.sun.com/software/chilisoft/.

Web Server Survey. (n.d.). Retrieved Jul. 11, 2005, from Web Server Survey Web site:

http://www.securityspace.com/s_survey/data/200507/index.html.

Welcome to Mindcraft. (n.d.). Retrieved Jul. 24, 2005, from Mindcraft Inc. Web site:

http://www.mindcraft.com/.

Whittman, A. (1999). Lies, Damn Lies, and Benchmarks. Network Computing, 10 Issue 11.

Retrieved Jul 16, 2005, from http://ejournals.ebsco.com/Home.asp.

Windows Server System. (n.d.). Retrieved Jul. 11, 2005, from Internet Information Services Web

site: http://www.microsoft.com/WindowsServer2003/iis/default.mspx.

