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ABSTRACT 
 
To efficiently meet customer requirements, a manager must supply adequate quantity of products, or 
capacity, or services at the right time with the right price. Revenue management technique can help firms 
to use differential pricing strategies and capacity allocation tactics to maximize revenue. In this paper, 
we propose Marginal Revenue-Based Capacity Management (MRBCM) models based on revenue 
management principle to manage stochastic demand at a micro-level to create revenue opportunities. In 
particular, MRBCM models are created to generate order acceptance policy, that is, to allocate available 
capacity for promising to alternative market segments. In our illustration, products are classified by 
revenue contribution in their respective capacity unit, low, middle, and high. In three models (MRBCMa, 
MRBCMb, MRBCMc), the amounts of capacity are reserved for the high and middle revenue classes. As 
an enhancement, MRBCMb and MRBCMc models consider opportunity revenue and cost in various 
completed fashions. To evaluate these models, we design and conduct simulations for 16 scenarios and 
compare three MRBCM models and two simple methods with the First-Come-First-Served (FCFS) policy 
in a single planning horizon. The experimental results show that MRBCM models generate significant 
higher profits over FCFS rule at each scenario. 

 
 

1. INTRODUCTION 
 

To meet diversified customer needs, products and services can be provided in associate with 
variant features, delivery time, volume discounts, and financial terms, and thus can be priced 
accordingly. Obviously higher priced orders ought to be processed in higher priority. The entire 
capacity then can be segmented into multiple categories in respect to the priorities or prices 
(called market segmentation).  In situations when demand exceeds supply and expanding facility 
is not available in the short term, a firm needs to develop a tactical decision policy to help best 
use of available resources. Therefore, to allocate limited pre-existing capacity for order 
promising is very critical for both service and manufacturing industries. 
 
Revenue management concepts shed great lights on attacking this type of problems. It involves 
two processes to balance demand and supply: regulating demand by changing prices or discount 
levels for products or services and regulating supply by adjusting production levels or capacity 
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availability. An effective revenue management means choosing the mix of supply and demand 
regulation activities that maximizes profit. Revenue management has been successfully applied 
to many service industries, such as airlines [Belobaba 1989; Smith et al. 1992; Weatherford and 
Bodily 1992; Weatherford 1998], car rentals [Carroll and Grimes 1995; Geraghty and Johnson 
1997], hotel and resort [Kimes 1989; Badinelli 1995], electric utility companies and 
telecommunication firms [Haas 1993].  In general, revenue management technique works 
particularly well when short-run capacity is inflexible and orders are price discriminable. 
Throughout the paper, revenue management is used for an order acceptance process that applies 
differential pricing strategies and stop-sales tactics to manage demand, allocate capacity, and 
enhance delivery reliability and speed, and therefore to maximize revenue from pre-existing 
capacity. 
 
Well performed in service industry, revenue management also has great potential in 
manufacturing environment. In make-to-stock (MTS) production, the revenue management 
tactical rules involve stock rationing. The inventory is selectively rationed to customers based on 
their relative importance when available inventory is not sufficient to fulfill the orders 
[Haynsworth and Price 1989; Gallego and Van Ryzin 1994].  In assemble-to-order (ATO) 
situation, on the other hand, revenue management considerations are typically related to allocate 
undifferentiated units of capacity to alternative market segments of varying profitability. The 
capacity may be special facility or equipment that could be pricing differently according to 
customer order time and delivery speed [Harris and Pinder 1995]. A series research by 
Balakrishnan et al. [1996, 1998] and Patterson et al. [1997] has developed capacity rationing 
models for make-to-order (MTO) manufacturers and service firms which focus on how to 
allocate the available capacity to different products or customers based on their relative profit or 
priority. To rationing scarce capacity between two or more product classes, a certain amount in 
total capacity needs to be reserved for the higher-profit class, according to the profit contribution 
per capacity unit of the product orders. The simulation results show that rationing models 
produce significantly higher profits than the model with no capacity rationing. 
 
Based on the revenue management principle, this paper proposes marginal probabilistic models 
for Revenue-Based Capacity Management (MRBCM). MRBCM models are used to manage 
stochastic demand and offer stop-sales tactical policies to maximize expect profit. From the 
concept, MRBCM models can handle above situations we reviewed in the manufacturing firms. 
More generally, the MRBCM-based tactical decisions can help any types of firms that may 
involve 
 

1) Allocation of same type of products into alternative market segments associated with 
different profits (e.g., in the service industries, such as allocating seats in airlines, rooms 
in hotels, broadcast time in advertising firms, and cars in car-rentals, or an insufficient 
inventory in MTS firms); 

2) Allocation of capacity/services into different products or customer channels as long as 
considered capacity can be aggregated as undifferentiated units (e.g., ATO firms) or 
product order size can be expressed in terms of capacity units (e.g., MTO firms). 

 
For the sake of simplicity and without loss of generality, this paper assumes that a firm produces 
three classes of products and their profit contributions per unit of capacity are low, middle, and 
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high, respectively. The product in the different classes can be replaced by others. We refer to 
these three product classes as class 1 (for lowest profit), class 2 (for middle profit), and class 3 
(for highest profit) and use R1, R2, and R3 to represent their revenue per unit of capacity, 
respectively.  Three simple methods and three models, MRBCMa, MRBCMb, and MRBCMc, 
are developed to maximize total expected revenue for available product capacity.  The 
MRBCMb and MRBCMc models, in which we consider opportunity revenue or/and costs of the 
higher classes. The models and algorithms developed for three classes can be easily extended to 
multiple classes. To benchmark our algorithms, we design and conduct simulations and evaluate 
the models relative to the base case with no capacity reservation, i.e., First-Come-First-Served 
(FCFS) policy. 
 
This paper is organized as follows. The Section 2 describes the main issue and notations. The 
Third Section introduces three basic methods that build a base to compare performance of 
different models. The Forth Section looks deeply into the issue and presents three MRBCM 
models with formulas, optimality conditions, and algorithms. Further experimental design is 
developed and the simulation results are discussed in Section Five. At last Section, the Sixth, 
everything stated above is clearly concluded. 
 

2.  BASIC VARIABLES AND ORDER ACCEPTANCE RULE 
 
In the real business world, demand can never be precisely predictable and capacity is often 
limited and inflexible. If all orders are confirmed on FCFS basis, the entire capacity will soon be 
exhausted by lower-end orders. The business may loss high marginal orders from emergent 
customers who are more likely willing to pay higher premium for quicker delivery. To ensure the 
availability to those customer segments, certain portion of capacity must be held up front. Two 
decisive questions then arise: 

1) What is the optimal amount of capacity should be reserved for high-end orders? 
2) What kind of order acceptance rule should be set? 

We will try to answer these questions in this paper. 
 
2.1  Parameters and Variables 
 
The following notations provide the definition for parameters, variables, and functions used in 
this paper. 

 Xi  -- the stochastic variable of demand for class i, for i =1,2,3. 
 fi(x)—the probability density function of variable Xi , for i =1,2,3. 
Fi(x)= P (Xi≤x) is the distribution function of variable Xi , for i =1,2,3. 
µi -- the mean of the distribution of variable Xi , for i =1,2,3. 
Ri-- the revenue or profit per unit from class i, for i =1,2,3. 
N  -- the total available capacity for three classes of the product 
T  -- the upper boundary of the arrival time for demand orders 

Two decision variables are associated with this decision problem: 
1) Protection Level (PL) – the minimum number of units reserved for a particular class, i.e., 

to be protected from sale to all lower profit classes. 
2) Order Quota (OQ) – the maximum number of units allowed for sale to a particular class. 
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A “hierarchically nesting” allocation policy is adopted for our order acceptance rule. “Nesting” 
means that, the upper class is allowed to take the capacity from the lower classes if need to, 
while the lower class is prohibited to use the capacity reserved for upper classes. In the event of 
an unanticipated demand, nesting avoids denying order requests for higher classes as long as 
there are capacities available in lower-profit classes.  
 
Besides calculating PL and OQ at the beginning of the planning horizon, we need track other 
three quantities dynamically in the order acceptance process: 

1) Current Orders -- O(i), the current total orders so far for class i 
2) Used capacity -- U(i), the current number of used capacity units that were reserved for 

class i 
 
2.2  Order Acceptance Rule 
 
Revenue Management Models mainly deal with demand uncertainty at a micro-level to create 
revenue opportunities. The model of allocation policy tries to generate an optimal protection 
level for each class to available to promise. The capacity reservations are set at the beginning of 
the planning horizon and remain unchanged. 
 
Following assumptions for our models are hereby set forth. First, we assume random demands of 
three classes are Poisson distributed over the planning horizon and the quantity of each order is 
independent. Second, a nesting structure is adopted regarding order acceptance rule. Third, the 
firm receives all orders over a single planning horizon, either accepts or rejects order as it arrives 
based on order acceptance rule.  Finally, we assume that demand or capacity cannot be carried 
over from one planning horizon to another.  The allocation policy needs to be set at each 
planning horizon according to the forecasted demand distributions and related profits. For 
simplicity, we consider each order has an average same size and let the size to be 1. 
 
For a given planning horizon T, the models are implemented based on the following order 
acceptance/rejection rule. 
Algorithm 
Step 1: At t = 0, calculate three protection levels PL(i),for i=1,2,3. Initialize O(i) = 0 and U(i) = 

0 for i = 1, 2, 3. 
Step 2: Receive an order according to the sequence of arrivals. If the order received at time t is 

for product class i. 
Step 3: If t>T, go to Step 4. 

 Otherwise,   
  if U(i) <PL(i), accept the order and let O(i)=O(i)+1, U(i)=U(i)+1; 
 Otherwise, check class k=1 to 3  in turn; 
  If  Rk < Ri  and U(k) <PL(k), then set U(k)=U(k)+1 and O(i)=O(i)+1; 
 Otherwise, reject the order.  

If  , go to Step 2; otherwise go to Step 4. N
i

iO <∑
=

3

1
)(
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Step 4: Calculate the total revenue ,  then stop. ∑
=

×
3

1
)(

i
iOiR

 
 

3.   BASIC METHODS 
 
In this section, we will introduce three basic methods.  These methods have very simple rules or 
formulas, and are very easy to understand.  Usually, their results are not qualified compared to 
the complex models that are described in section 4. However, their results can help us to measure 
the improvement of the MRBCM models. 
  
3.1   First-Come-First-Served Method (FCFS) 
 
The FCFS method does not set the protection levels for higher classes. It is equivalent to setting  
  PL(i )=N,  for i=1,2,3. 
 
3.2   Mean-Weighted Capacity Management Method (MWCM) 
 
The MWCM method sets the protection level for each class according to its mean of the 
distribution of orders, i.e.,  

  PL(i )=N        for i=1,2,3. )/(
3

1
∑
=j

ji µµ

 
3.3   Mean-Revenue-Weighted Capacity Management Model (MRWCM) 
 
It is easy to know that the total revenue depends on the number of orders and the price that is the 
revenue per unit of the order.  The MRWCM method sets the protection level for each class 
according to the product of the mean of the distribution of orders and its unit-revenue as follows:  

  PL(i )=N        for i=1,2,3. )/(
3

1
∑
=

×
j

ji jRiR µµ

 
4.  MARGINAL REVENUE-BASED CAPACITY MANAGEMENT MODELS (MRBCM) 
 
In this section, we will provide three models, which are non-linear programming models.  Using 
Kuhn-Tucker optimality conditions to the first model, we get marginal revenue equations, which 
is the base to build our MRBCM models. 
 
4.1  Model MRBCMa 
 
MRBCMa model, is a simple Revenue-Based Capacity Management (MRBCM) model. Its 
objective is to maximize total expected profit, not considering usage of resources across classes.  
Formulation

Max  E1(x1) + E2(x2) + E3(x3)  
s.t.  x1 + x2 + x3 <= N 

 
  

507



  x1, x2, x3 >= 0        (4.1) 
Where 

x i = the size of volume of capacity to be reserved for class i, (i = 1,2,3), that is, the 
protection level of class i, i.e., x i =PL(i), 
 Ei(xi) = the expected profit for class i. 
 
In order to calculate Ei(xi), we have   

∫
∞

+×∫=
ix

dttifixiRdttif
ix

oiRixiE t )()()(     (4.2) 

Note the second term of above equation that when the demand is greater than xi , only xi units of 
product for class i is sold.  In this paper, we assume the demand for class i obeys a Poisson 
distribution then the above equation just needs change to a discrete case, i.e., from an integral to 
a sum as follows: 

∑∑
>

=+
≤

=
==

ixj
jiXPixiR

ixj

j
tiXjPiRixiE )(

1
)()(    (4.3) 

Optimality Conditions 
Using Kuhn-Tucker optimality conditions [Luenberger 1989], maximization for equation (4.1) 
can be reached if following conditions are met:  

R1P(X1≥x1) = R2P(X2≥x2) = R3P(X3≥x3) 
x1 + x2 + x3 = N 

 x1, x2, x3≥ 0        (4.4) 
Where  

P(Xi≥t) is defined as the probability that at least t number of units can be sold to the class 
i.   

In the continuous distribution, we have P(Xi≥t)= P(Xi>t). So we have  
R1P(X1>x1) = R2P(X2>x2) = R3P(X3>x3)     (4.5) 

Let Gi(xi) = P(Xi > xi)=1-F i(xi),  
R1G1(x1) = R2G2(x2) = R3G3(x3)      (4.6) 

Let  EMRi(xi) = RiGi(xi), the optimal allocation conditions can be shortened as:  
EMR1(x1) = EMR2(x2) = EMR3(x3) 
x1 + x2 + x3 = N  

 x1, x2, x3 ≥ 0        (4.7) 
 
EMRi(xi) denotes Expected Marginal Revenue for product class i when the number of quantity 
available to the class i is xi.  EMRi is just the revenue of the class i multiplies by the probability 
that the demand for class i is greater than to xi, or the probability of the (xi+1) th unit of products 
can be sold.  The equation (4.7) means that the expected marginal revenues of three classes are 
equal at the optimality condition.  
 
In the discrete distribution, we cannot guarantee to find out xi s to satisfy formula (4.7). The 
necessary condition becomes:  

EMR1(x1) ≈ EMR2(x2) ≈ EMR3(x3) 
x1 + x2 + x3 = N 
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 x1, x2, x3 ≥ 0        (4.8) 
where ≈ means as closer as possible. In the following algorithm, we can request the absolute 

difference between any two of EMRi(xi) is less than a pre-specified small positive number. 
 
As described in early this section, a Poisson distribution is assumed for random demand. If the 
mean of the demand for product class i in the planning horizon is much larger than zero, it is 
reasonable to assume that demand approximately obeys a Normal distribution.   
 
4.2  Model MRBCMb 
 
MRBCMb model is an extension of model MRBCMa by taking into account of lower classes’ 
opportunity revenue. The opportunity revenue means a capacity, which is reserved for lower 
profit class, is sold for a higher profit class in the planning horizon because of nesting allocation 
rules.  
 
Considering opportunity revenue, EMRi (i=1, 2, 3) can be revised as 

EMR1(x1) =G1(x1)v1+(F1(x1)- F1(x1-1))v2
Where  

v1= F2(x2) F3(x3) R1
      +G2(x2) F3(x3)[(R1G1(x1)+ R2G2(x2))/(G1(x1)+ G2(x2))] 
      +F2(x2) G3(x3)[(R1G1(x1)+ R3G3(x3))/(G1(x1)+ G3(x3))] 
      +G2(x2) G3(x3)[(R1G1(x1)+ R2G2(x2)+ R3G3(x3))/(G1(x1)+ G2(x2)+ 

G3(x3))], 
v2= G2(x2) F3(x3)R2 +F2(x2) G3(x3)R3  
      + G2(x2) G3(x3)[(R2G2(x2)+ R3G3(x3))/(G2(x2)+ G3(x3))] 

EMR2(x2) = G2(x2)F3(x3) R2
      + G2(x2) G3(x3)[(R2G2(x2)+ R3G3(x3))/(G2(x2)+ G3(x3))] 
      +(F2(x2)- F2(x2-1))G3(x3)R3 

EMR3(x3) = G3(x3)R3    (4.9) 
 
In which, there is no opportunity revenue in class 3 since it is the highest class. 
 
1) The first term of EMR1(x1), i.e. G1(x1)v1, is the approximation of the expected revenue 

when the order for class 1 is greater than its protected level, i.e. X1> x1.   Even though 
X1> x1, the capacity of the x1 units can still be sold to class 2 or 3 if the order for one of 
those higher classes exceeds its protected level, and the customer arrivals earlier than the 
x1th customer of class 1.  

 
2) The second term of v1, G2(x2) F3(x3)[(R1G1(x1)+ R2G2(x2))/(G1(x1)+ G2(x2))] is an estimate 

of the expected revenue when  X1> x1 and X2> x2, but X3≤ x3. If we consider the marginal 
revenue for the x1th capacity unit, only the earliest one of the two orders of class 1 and 2 
can be satisfied. What is the probability that the x1th unit is sold to the customer of class 
1?  The answer depends on their distribution function. We use G1(x1)/(G1(x1)+ G2(x2)) to 
estimate this probability, and use G2(x2)/(G1(x1)+ G2(x2)) to estimate the probability that 
the x1th unit is sold to the customer of class 2.  The same way is applied in term v2, and 
EMR2(x2). 
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3) It seems that the second term of EMR1(x1) should be F1(x1)v2, since the sum of G1(x1) and 

F1(x1) equals one,  represents the total probability of the stochastic variable X1. Here, the 
value of F1(x1)- F1(x1-1) is the probability that x1-1 customers of class 1 have come, but 
the x1th customer has not appeared.  So the x1th unit of capacity, which is assigned to 
class 1, can be used by other classes.  Term v2 in EMR1(x1) estimates the probabilities that 
the x1th unit for class 1 is used by class 2 or class 3.  To make the formula complete, we 
should add terms related to F1(x1-1)-F1(x1-2), F1(x1-2)-F1(x1-3)…, and F1(1)-F1(0), which 
represent 2,3, …, and x1 extra units for class 1 are available for class 2 or class 3.  We 
ignore these cases and only keep F1(x1)-F1(x1-1) for two reasons. (i) Since the mean of 
class 1 is much larger than that for class 2 and 3 in practice, the probability that class 1 
has more than 1 extra unit is very small.  (ii) The values of v2 for cases related to F1(x1-
1)-F1(x1-2), F1(x1-2)-F1(x1-3), …, and  F1(1)-F1(0) will be different and complete.  We 
can calculate these value separately, but we can not use one value, i.e. v2, times F1(x1).  
Recalling that we consider the marginal revenue only in order to obtain the optimal 
condition of the non-linear programming, the error of ignoring F1(x1-1)- F1(x1-2) to F1(1)- 
F1(0)  is very small.  

 
4.3  Model MRBCMc 
 
Model MRBCMc are marginal probabilistic Revenue-Based Capacity Management models, 
which maximize total expected revenue by taking into account of higher classes’ opportunity 
cost. The opportunity cost here simple means a capacity waste in terms of capacity reservation 
for high profit class that cannot be sold in the planning horizon because of nesting allocation 
rules.  MRBCMc improves MRBCMa model by not reserving excessive capacity for high and 
middle profit classes. 
 
Counting in the opportunity cost, EMRi (i=1, 2, 3) in equation (4.7) are revised as 

EMR1(x1) = G1(x1)R1
EMR2(x2) = G2(x2)R2 - F2(x2)b2
EMR3(x3) = G3(x3)R3 - F3(x3)b3    (4.10) 

 
Where b2 and b3 are expressed as 

b2 = G1(x1)R1         
b3 = G2(x2)R2 + F2(x2)G1(x1)R1

 
The variable b2 in EMR2 represents the opportunity loss associated with unsold excessive 
capacity reservation for class 2. It occurs when class 1 receives requests more than x1 units, and 
at meantime in class 2 and 3 there exist excessive capacity available but no more than x2 nor x3 
units are request. If the surplus is allocated to the lower class, the profit will be R1. Otherwise, it 
will be wasted for nothing. Analogously, same situation may happen when class 3 has difficulty 
to sell. The variable b3 in EMR3 represents the opportunity loss associated with excessive 
capacity reservation for class 3 but unused. It includes two parts: the one when receiving more 
than x2 unit requests but rejected by class 2 and no more than x3 request. And the other when 
receiving more than x1 unit requests but not able to accept, also neither more than x2 nor more 
than x3 units will be request by the end of the planning horizon for class 2 and 3, respectively. 
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There is no opportunity cost in class 1 due to its lowest rank, so b1=0.  We have the following 
general formula 
  EMRi(xi) = Gi(xi)Ri –Fi(xi) bi  for  i=1,2,3.     (4.11) 
 
If G3(x3) and G2(x2) are very small, and G1(x1) is close  to 1 (in the case that both mean2 and 
mean3 are significantly smaller than mean1), the values of b2 and b3 are very close to R1G1(x1). 
We denoted it as b. Replacing b2 and b3 with b, we can get an approximation method. 
 

EMR1(x1) = G1(x1)R1
EMR2(x2) = G2(x2)R2 - F2(x2)G1(x1) R1
EMR3(x3) = G3(x3)R3 - F3(x3)G1(x1) R1      (4.12) 

 
This simplified model has pretty good results based on our simulated cases in section 5. 
However, we ignored in our result tables to reduce the length of this paper. 
 

5  EXPERIMENTAL DESIGN AND RESULT DISCUSSION 
 
5.1  Experimental Design 
 
We compare six models associated with different capacity allocation policies in our simulation 
experiments. They are: (1) FCFS: that is, for any classes, accepts any orders as they arrive until 
all available capacity has been allocated. No capacity is reserved for the high and middle profit 
classes; (2) MWCM; (3) MRWCM; (4) MRBCMa; (5) MRBCMb; and (6) MRBCMc. These 
models use same order acceptance rule as we described in the Section 3. We use the total 
revenue over the planning horizon as model performance measure.   
 
If we assume order arrival for class i is a Poisson process with mean µi, then the inter-arrival 
times of orders are IID exponential random variables with common mean 1/ µi. Thus, we can 
randomly generate arrival times of orders for each class over the planning horizon recursively. 
After three streams of orders (for classes 1, 2, and 3) are generated, they are merged to be a 
sorted arrival time to create a single combined sequence of orders for all three classes. For each 
scenario, 10000 independent replications (using different random seeds) are performed. All 
models are coded in C and implemented on Pentium personal computer.  
 
We assume total capacity for three classes of products is 300.  Three major factors are examined 
when we make the experimental design for the simulation. They are (1) the profit ratio; (2) the 
ratio of expected demand for three classes; and (3) the capacity tightness or the ratio of the total 
available capacity to expected total demand. 
 
The parameter settings for the 16 scenarios are summarized in Table 1. The second column 
shows the means of demand for three classes. The third column is their profits associated. 
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Demand Mean Profit ($) 
Case ID 

µ1 / µ2 / µ3 R1 / R2 / R3

A1 450 /  75 /  25 600 / 800 / 1000 
A2 450 /  75 /  25 500 / 800 / 1200 
A3 450 /  75 /  25 400 / 800 / 1600 
A4 450 /  75 /  25 300 / 800 / 2000 
B1 400 / 100 /  50 600 / 800 / 1000 
B2 400 / 100 /  50 500 / 800 / 1200 
B3 400 / 100 /  50 400 / 800 / 1600 
B4 400 / 100 /  50 300 / 800 / 2000 
C1 350 / 125 /  75 600 / 800 / 1000 
C2 350 / 125 /  75 500 / 800 / 1200 
C3 350 / 125 /  75 400 / 800 / 1600 
C4 350 / 125 /  75 300 / 800 / 2000 
D1 300 / 150 / 100 600 / 800 / 1000 
D2 300 / 150 / 100 500 / 800 / 1200 
D3 300 / 150 / 100 400 / 800 / 1600 
D4 300 / 150 / 100 300 / 800 / 2000 

 
Table 1.  Parameters settings for 16 simulation scenarios 

 
5.2  Results Discussion 
 
Table 2 presents the Protection Levels for five methods on 16 simulation scenarios.  We notice 
that, MWCM and MRWCM allocate more capacity to class 1. On contrast, MRBCM models 
reserve more capacity for class 2 and 3.  The difference of Protected Levels is the major driver to 
make significant differences among average revenues of these models, which is shown in Table 
3. 
 
In order to compare five models with FCFS from a statistical perspective, we run 10,000 
replications for each simulation scenario and show the result in Table 3.  If we look through 
Table 3 more carefully, from scenario A1 to D4, we found that the improvements of these 
models compared with FCFS also depend on the parameters of scenarios. The larger of the 
difference of revenues between class 1 and class 3 is, the more significantly better the 
performance of MRBCM models is. 

 
6.  CONCLUSION 

 
In this paper, we develop three marginal probabilistic optimization models for revenue-based 
capacity management. Specifically, we assume that firms produce three classes of products, 
which having three different unit profit contribution levels. Our MRBCM models generate an 
approximate optimal protection level for each of three classes for available to promise to relevant 
customer channels. The models are compared with the base case of no capacity reservation in 16 
scenarios by a wide number of simulation experiments. The results indicate these MRBCM 
models have significant increases in revenue compare to the FCFS policy and other two simple 
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methods. Thus the models and algorithms developed will have a great practical value for any 
firms that need to reserve capacity for high profitable customer segments. 
 
It is clearly that the models we created in this paper generate approximate solutions for the 
complex non-linear programming.  More detailed models could be developed and evaluated in 
further researches. 
 

MWCM MRWCM MRBCMa MRBCMb MRBCMc Method 
Case PL(

1) 
PL(
2) 

PL(
3) 

PL(1
) 

PL(2
) 

PL(3
) 

PL(1
) 

PL(2
) 

PL(3
) 

PL(1
) 

PL(2
) 

PL(3
) 

PL(
1) 

PL(2
) 

PL(3
) 

A1 245 40 15 228 50 22 205 70 25 207 70 23 215 65 20
A2 245 40 15 214 57 29 200 73 27 203 72 25 210 68 22
A3 245 40 15 192 64 44 195 76 29 197 75 28 206 70 24
A4 245 40 15 165 73 62 190 79 31 193 77 30 201 73 26
B1 218 54 28 194 64 42 157 94 49 160 93 47 168 88 44
B2 218 54 28 176 70 54 150 98 52 154 96 50 162 92 46
B3 218 54 28 150 75 75 143 101 56 147 99 54 156 95 49
B4 218 54 28 120 80 100 138 104 58 142 102 56 150 98 52
C1 190 68 42 163 77 60 108 118 74 112 117 71 121 112 67
C2 190 68 42 143 82 75 100 122 78 105 120 75 113 116 71
C3 190 68 42 116 83 101 92 126 82 98 123 79 107 119 74
C4 190 68 42 88 84 128 86 129 85 92 126 82 100 123 77
D1 163 81 56 135 90 75 59 143 98 65 140 95 73 136 91
D2 163 81 56 115 92 93 50 147 103 58 143 99 65 140 95
D3 163 81 56 90 90 120 41 151 108 49 147 104 56 144 100
D4 163 81 56 65 87 148 34 155 111 43 150 107 50 147 103

 
Table 2.  Protection Levels for simulation scenarios and methods 
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Case FCFS MWCM MRWCM MRBCMa MRBCMb MRBCMc 

 Mean Mean Increase 
(%) Mean Increase

(%) Mean Increase
(%) Mean Increase 

(%) Mean Increase
(%) 

A1 187369 193439 3.2 194254 3.7 193113 3.1 194242 3.7 196596 4.9
A2 161265 171836 6.6 173750 7.7 174479 8.2 175732 9.0 177799 10.3
A3 135587 153118 12.9 155181 14.5 160117 18.1 160780 18.6 163174 20.4
A4 109908 134400 22.3 138284 25.8 146547 33.3 147279 34.0 149058 35.6
B1 196548 202097 2.8 207337 5.5 207947 5.8 209127 6.4 210730 7.2
B2 176549 185973 5.3 195004 10.5 198602 12.5 199970 13.3 201933 14.4
B3 160003 175492 9.7 188138 17.6 198495 24.1 199714 24.8 201937 26.2
B4 143458 165010 15.0 184958 28.9 200123 39.5 201089 40.2 202659 41.3
C1 205851 210661 2.3 218650 6.2 222158 7.9 223645 8.6 225129 9.4
C2 192053 200254 4.3 217022 13.0 222459 15.8 224121 16.7 225775 17.6
C3 184807 198368 7.3 220673 19.4 237190 28.3 238890 29.3 240740 30.3
C4 177562 196483 10.7 228442 28.7 253593 42.8 254948 43.6 256475 44.4
D1 215178 219089 1.8 227902 5.9 236541 9.9 238166 10.7 239302 11.2
D2 207599 214332 3.2 237512 14.4 246365 18.7 248583 19.7 249811 20.3
D3 209686 220970 5.4 255301 21.8 275668 31.5 277787 32.5 279149 33.1
D4 211772 227609 7.5 273240 29.0 306897 44.9 308756 45.8 309852 46.3

Average 169129 180537 7.5 207228 15.8 217518 21.5 218927 22.3 220632 23.3
 

Table 3.  Average revenue of five methods compared with FCFS over 10,000 replications  
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