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 ABSTRACT 

Assessing retail demand is basic to inventory modeling research and has received much attention in 
the literature. However, estimating the rate of products sold when few there are few, if any, sales 
has not received the adequate attention. This paper borrows a technique used in assessing software 
reliability to estimate the future rate of sales of slow moving products.  An estimator is proposed to 
forecast the rate of future sales for products that have not sold over a specified interval of time. This 
estimator uses statistical information from the rate of products that have sold. The distribution of 
this estimator is shown to be positively skewed for large time intervals and somewhat negatively 
skewed for short time intervals. A simple approach to estimating the rate of sales for any specified 
product is to compute the ratio of the number of items sold over a time interval. This paper points 
out that this estimate can be bias if the time interval selected is such that it ends only after a certain 
number of items have been sold.  
 

 INTRODUCTION 

Many retail items sell slowly and estimating future sales rate may be difficult after a few weeks of 
slow sales. Masters (1993) sites several examples of products that have low demand, such as specific 
clothing items, automobile repair parts, and specific compact disc titles. What type of estimate can a 
sales manager obtain to estimate the rate of sales of the specific style shirts that have not sold?  What 
are the necessary assumptions for this estimate to be reliable?  This question will be addressed in 
this paper.  
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Software Reliability 

Before addressing this problem, we first mention that this problem is related to a similar problem in 
maintaining reliable software. The inherent complexity of the software development process is 
created by many factors and makes it difficult to maintain reliable software.  Estimating the 
reliability of individual software packages or of software available on a client server network may be 
an elusive task even after design reviews, module testing, and self-checking.  Software engineers 
typically put software through a testing phase over a specified period of time to determine when it is 
ready to be released to consumers, without over testing creating an excessive time-to-market (Lyu, 
1995).  During this period of time, any bug or fault in the software is usually removed. The term bug 
is defined in the Reliability, Availability, and Maintainability Dictionary by Omdahl (1988) as a 
program defect. The term bug is used here as an equivalent term for fault. , the terminology of fault 
and error rate in software reliability will be defined as in Musa, Iannino, and Okumoto (1987). A 
fault is defined as Aa defective, missing, or extra instruction or set of related instructions that is the 
cause of one or more actual or potential failure types@  by Omdahl (1988). A fault with the software 
does not necessarily cause the system to cease operations.  

 
Since software companies are typically under pressure to release software to be first on the market, 
there is not enough time to make their software completely bug-free. Thus, software companies often 
release software knowing that bugs (errors in coding) are present. The software company attempts to 
estimate the rate of faults occurring in the software without having observed the errors made by the 
remaining bugs. Assumptions about the distribution of the number of errors need to be made. 
Schulmeyer and McManus (1992) suggest errors are often assumed to occur under the assumptions 
of a Poisson process.  
 
Application of Software Reliability Logic 

In retail selling, demand in many situations is also often assumed to occur as a Poisson process. 
Axsater (1993) suggests that for many consumables, repairable or modular items with low demands 
and a continuous review policy, the appropriate demand distribution follows a Poisson process.  
Axsater (2000) suggests that for the “general and practically important” problem of maintaining 
spare parts that demand can be modeled with a Poisson or compound Poisson process, while other 
assumptions are better for higher demand products.  In inventory applications, the product can be 
thought of as a “bug” and the number of times that the product sells per unit of time as the error rate. 
For product items that sell, the sales rate can be estimated as the number of items that have sold per 
unit of time. For products that have not sold, a zero sales rate is actually too conservative, as in 
software, because it may be that the period of time over which the sales are being estimated may not 
have been long enough.  

 
In the next section, we discuss how the estimate of sales rate should be computed if an unbiased 
estimate is desired. Then, a proposed estimate for the sales rate of products that have not sold is 
presented. The skewness of the distribution of this estimate is investigated. An example of an 
application of the estimate is presented followed by the conclusion section.  
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ESTIMATING SALES RATE FOR PRODUCTS WITH NONZERO SALES FIGURES 
 
Since sales demand has often been modeled as following a Poisson Process, we will make the 
assumption that sales follows a Poisson Process. Now, estimating the sales rate may appear to be a 
straight forward process by simply dividing the number of sales by the time. Practitioners may think 
that either of the following procedures is acceptable in estimating the sales rate, which we will be 
denote by λ.  

 
Estimation Procedure 1. Observe the time T that it takes for a fixed k* number of errors to appear in 
testing and estimate  λ to be k*/t.  

 
Estimation Procedure 2. Observe the number of errors that occur over a fixed time t* and  estimate 
λ to be k/t*.  

 
In Estimation Procedure 1, notice that k* is fixed and T is a random variable. Thus, by the 
assumptions of a Poisson process, T is the sum of k* exponential random variables. So T is 
distributed as a Gamma (k*, λ). Since the likelihood function is proportional to λk*exp(-λt), the 
estimator is k*/t.  Note that E(k*/T) =  λ (k*/ (k* - 1)).   So, this estimator will be biased unless it is 
adjusted. So the unbiased estimator is (k*-1)/T.  The variance of this estimator is Var((k*-
1)/T)=λ2(1/ (k*- 2)). 

 
In Estimation Procedure 2, notice that t* is fixed and K is a random variable. Here, the random 
variable K (with k being a value of the variate K) is a Poisson random variable. Since the likelihood 
function of K is again proportional to λkexp(-λt*), the estimator is k/t*.  Now, E(K/t*) =  λ.  So, this 
estimator is unbiased and its variance is Var(K/t*) = λ/t*.  When is the variance of the first 
estimation procedure approximately the same as the variance of the second estimation procedure? If 
we set Var(K/t*) = Var((k*-1)/T) then λ/t* = λ2(1/ (k* - 2)) or λ = (k*-2)/t*.  So if k* and t* are 
selected such that λ is approximately equal to k*/t* then the two procedures are considered 
equivalent.  

 
Which estimator is the preferred estimator? If k is large, then estimation procedure 1 should be 
essentially unbiased. For small number of occurrences, this error rate may be too biased to be useful. 
A user has to assess the variance of these estimators to decide which procedure is most desirable. 
Selecting t* to be too large may not be practical and selecting a large k* may take much longer than 
is practical in observing the number of items sold. Therefore, practitioners should be aware of the 
differences in selecting these estimators to forecast future sales rates.  
 

ESTIMATING SALES RATE FOR PRODUCTS WITH ZERO SALES FIGURES 
 

We again make the assumption that the sales of each product in a large pool of products follow a 
Poisson distribution. The notation that we will use is for the underlying unknown rate of product i is 
unknown rate λi. When products sell, we can use the estimation procedures in the previous section to 
estimate the rate at which they will sell.  For products showing no sales over a specified period of 
time, a zero future rate of sales is too conservative since they may eventually sell.  
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The problem in this section is to determine the future sales (or demand) rate for products with no 
sales.  An estimator that Ross (1985, 1993) proposes for the failure rate of software is the sum of the 
number of bugs that cause exactly one failure (call this sum M1(t)) divided by time period t in which 
these failures occur.  Thus the estimator is M1(t)/t and the total number of bugs in the system does 
not have to be known.  In addition, it is possible for the failure rate of each bug can be different. 
Now, this estimator could be applied to the situation in which the rate of sales is being observed. The 
variable M1(t) could be used to represent the number of products that have sold only one item.  

 
Ross (1993) provides an estimate of the variance of his proposed estimator as (M1(t) and 2M2(t))/t2.  
Again, this variance estimator has the advantage of not requiring knowledge of the total number of 
bugs in the system. The variable M2(t) could be used in the sales situation to represent the number of 
products that have sold exactly 2 items.  A disadvantage to Ross (1993)=s estimator is that the 
distribution of M1(t) is not known. A normal approximation may be used, but the accuracy of  this 
procedure is dependent on the time of the interval and the number of products in the system.  

 
To formally develop the estimator of the future sales rate of the pooled set of products that have not 
sold, first we consider all products and use an indicator function to represent whether a product has 
sold any items over time t. Each product has an underlying sales rate, λi. Let Ψi(t) = 1 if product i 
has not sold by time t and 0 if it has sold.  We wish to estimate the value of the following random 
variable in which n is the number of products for sale.  
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As mentioned earlier, we define M1(t) and M2(t) as the number of bugs that were responsible for 
causing exactly one failure and two failures, respectively.  We now state several results which can be 
proved using the standard statistical assumptions of a Poisson process. Thus, M1(t)/t and Λ (t) have 
the same expected value. To be a Agood@ estimator of Λ(t), M1(t)/t’s variance should be small.  
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Note that if the sales rates λi  for each of the n products was large, then  would be small. In 
this case, the expected value of M

e t-
i

iλλ
1(t) would yield a small number of products with no sales. This is 

consistent with what one would expect M1(t) to be when products are selling at a fast rate. In 
addition, note that if t (time for testing) is large, then each of the terms in the expected value of  
M1(t)/t will be small, thus yielding a small sales rate. The last equation above shows that (M1(t) + 
2M2(t))/t2 is an unbiased estimator of the squared difference of Λ(t) and M1(t)/t (error in estimating 
the true sales rate of products that have not sold). Again if  t  is large, this variance becomes small.  

 
We derive a bound on the E[(Λ(t) -M1(t)/t)2] as follows: 
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Therefore (λit)2 - tλi - 1 = 0.  The positive solution to this equation is: 

 
t).(2 / )  5  + (1 = iλ   (5) 

 
Hence, we can substitute this value in the formula for E((Λ(t) - M1(t)/t)2) and produce the following 
bound which provides the practitioner with an upper limit for the expected squared error with 
knowledge of only n and t 

 
 tn/  (.83996) = e  ] 2 / ) 5  +  (1 + )2/) 5  +  (1 ( [  ) t(n /   ) ) / t ) t ( M - (t)( (  E 22 / ) 5  +  (1  -222
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To investigate the distribution of M1(t)/t, a simulation was repeated 500 times of 300 products with a 
Mean Time Between Sales of 40 hours (rate = 1/40) over different time periods. For a time period of 
t = 50, notice the skewness estimate of -.30085 for this distribution as shown in Table 1. Notice that 
for table2 with t = 70, the skewness is a small negative number. In Table 3, the skewness is a small 
positive number and then in Table 4 for t = 150, the skewness is approximately .3. Thus, the 
skewness of this estimator is somewhat negative for small time period and eventually becomes 
positive for larger time periods.  
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Table 1: Distribution of empirical sales rate of products with no sales over a period of 40 hours,Table 2: 
Distribution of empirical sales rate of products with no sales over a period of 70 Hours, Table 3: Distribution of 
empirical sales rate of products with no sales over a period of 130 hours, and Table 4: Distribution of empirical 
sales rate of products with no sales over a period of 150 hours are available upon request. 
  
Example 

Suppose that a retail manager received a shipment of suits. After 100 hours of selling this stock 
of suits, assume that there were 16 styles in which exactly one suit sold and ten styles in which 
exactly 2 suits were sold.  The estimate of the future sales rate for those styles that have not sold 
is M1(t)/t = 3/100 = .03.  If the distribution of M1(t)/t could be assumed to be normally 
distributed, then a 95% confidence interval on the expected future error rate is  
 

 t / ) )(t  M  2 + (t) M(  1.96  / t (t) M 2
211 ± .    (7) 

 
.124.  to.064-or  100 / 231.96  .03 is interval This 2±   Hence, the future sales rate for the products, 

in aggregate, that have not sold is approximated to be between 0 to .124.  Or in terms of mean 
time between sales, between 8 hours (1/.124) and infinity (1/0),  thus, the retail manager should 
not expect to sell more than one suit per day (8 hours) from the styles that have not sold. 

 
 CONCLUSION 
 
This study applies an approach used in software reliability to estimate the future sales rate of 
products that have not sold over a specified period of time. How good of an estimator is the 
proposed method? As mentioned in the section for estimating sales for products that show no sales, 
the distribution of the estimator may be more skewed for small time periods and for large time 
periods. What determines large and small here? That could depend on the number of products and 
the sales rates of those products. Future research should be devoted to understanding the shape of the 
distribution of this estimator. Another question of importance is the usefulness of this approach to 
the retail manager.  This may depend on the cycle of time in which a manager has to sell goods. The 
proposed approach assumes a Poisson process, which may not be a good model for the selling of 
some products. In summary, the approach presented here gives another tool to the supply chain 
manager to obtain a hard-to-obtain estimate on future sales rates of products that are slow movers.  
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