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ABSTRACT 
 
Based on an assumption of one-way learning, Granato and Wong (2004) consider a framework 
with two groups of agents, Group L and Group H, where Group L is less "attentive" and uses the 
expectations of the more or highly "attentive" Group H to update their forecasts. The paper 
shows the "boomerang effect," which is defined as a situation where the inaccurate forecasts of a 
less attentive group confound a more attentive group's forecasts. This extended paper relaxes the 
one-way learning assumption and investigates the case that both groups are learning from each 
other, i.e., dual learning. Simulations suggest that a boomerang effect still exists. Surprisingly, 
although the highly attentive group has a full set of information to make forecasts, they still learn 
from Group L. The reason is that Group H adjusts their forecasts because there is available 
information in Group L's forecast measurement error. 
 
 

INTRODUCTION 
 
This paper follows an adaptive learning model in Granato and Wong (2004) where we assess a 
dynamic information diffusion process among different groups of agents (in a self-referential 
model).1
 
We build our framework within a general cobweb-type expectation model while it is widely 
applicable and popular among macroeconomic studies (see Ezekiel, 1938; Muth, 1961; Arifovic, 
1994; Brock and Hommes, 1997; Evans and Honkapohja, 2001; and Branch, 2002).2 Lucas 
(1973), in particular, models inflation expectations with a cobweb model. In the paper of Granato 
and Wong (2004), we examine the "boomerang effect," which is defined as a situation where the 
inaccurate forecasts of a less attentive group confound a more attentive group's forecasts. We 
consider a framework with two groups of agents. Both groups use least squares learning to make 
their forecasts. However, Group L is less "attentive" and uses the expectations of the more or 
highly "attentive" Group H to update their forecasts. We conclude that the inaccuracy of Group 
L's forecast has a boomerang effect: the inaccurate forecasts of Group L now confound Group 
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H's convergence to the rational expectations equilibrium and predictive accuracy. However, 
Granato and Wong (2004) assume that the less attentive agents solely learn from the high 
attentive ones while the opposite direction of information diffusion does not exist. This one-way 
learning can be challenged in the current literature. For example, Bomfim (2001) uses a dynamic 
real business cycles model in which there are sophisticated or rule-of-thumb agents in an 
economy.  He assumes that the sophisticated agents form their expectations by forecasting the 
decisions of the less sophisticated rule-of-thumb agents.  His results indicates that the aggregate 
properties of the economy are influenced by the rule-of-thumb agents (see also Towsend, 1983). 
 
In this paper, we relax the assumption of one-way learning and investigate the case that both 
groups are learning from each other -- Dual Learning.  Consistent with the rest of assumptions in 
Granato and Wong (2004), we assume that the highly attentive group has the full information set 

 and the less attentive group has a subset of information ( 1−tw ) ( ) ( )111 , −−− ⊂ ttt wxx . 
 
Simulations suggest that a boomerang effect still exists in the model. Surprisingly, although the 
high attentive group has the full information set to make forecasts, they still learn from Group L. 
The reason is that Group H adjusts their forecasts because there is available information in 
Group L's forecast measurement error. 
 
This paper is organized as follows. We first provide the cobweb model where both groups learn 
from each other. In the next section, we show and discuss the results from the simulations. The 
last section concludes. 
 

THE MODEL 
 
The Perceived Law of Motion and Actual Law of Motion 
 
The law of motion in an economy is presented in equation (1): 
 
  (1) ,' 1

*
1 ttttt wyEy ηγβα +++= −−

 
where  is an endogenous variable,  is the (rational or nonrational) average expectation of 

 formed at time t-1,  is a 2×1 vector of exogenous variables partitioned into two parts: 

 and 

ty tt yE *
1−

ty 1−tw

( ,, '
1,211 −−− ≡ ttt wxw ) tη  is ( )2,0 ησiid . In this case, we assume that both groups are using other 

group's expectations to make their own forecasts. 
 
The perceived law of motion (PLM) for Group L is: 
 
  (2) ,ˆ 1,1,11,1,,

*
1 −−−−−− ++= tHtLttLtLtLt ycxbayE

 
and 
 
 ,~ˆ 1,,

*
11, −−− += tLtHttH eyEy    
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where ( )2
~1, ,0~~

LetL iide σ−  is the measurement error for Group L and  is the observed 
information from Group H. As noted earlier in the introduction that the less-informed agents 
would acquire information from more-informed agents.  This borrowed information includes the 
expectations from more-informed agents.  However, less-informed agents could experience some 
difficulty in understanding these expectations, and they may interpret the more-informed agents' 
information differently themselves.

1,ˆ −tHy

3 It is also intuitively reasonable to believe agents are not able 
to obtain the exact information from others.  Therefore, we impose a distribution of observational 
errors, 1,

~
−tLe , to indicate the degree of misinterpretation of others' actions. 

 
Since we assume that both groups are learning from each other, Group H forecasts  using the 
following PLM: 

ty

 
  (3) ,ˆ 1,1,11,211,11,,

*
1 −−−−−−−− +++= tLtHttHttHtHtHt ycwbxbayE

 
and 
 
 ,~ˆ 1,,

*
11, −−− += tHtLttL eyEy   

 
where ( )2

~1, ,0~~
HetH iide σ−  is the measurement error for Group H and y_{L,t-1} is the observed 

information from Group L. Different from Granato and Wong (2004), equation (3) represents the 
possibility that Group H learns Group L's mistakes although Group H possesses full information 

. ( )'1,21 , −− tt wx
 
Since both groups are learning from each other simultaneously, we stack both groups' 
expectations ((2) and (3)) together: 
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Least Squares Learning 
 
Following the standard literature of adaptive learning (Evans and Honkapoha, 2001), we assume 
that agents use recursive least square (RLS) to update their expectations. Given the data through 
time t-1, Group H and Group L use least squares regressions of  on 

 and 
ty

( '
1,1,211, ˆ,,,1 −−−− ≡ tLtttH ywxz ) ( )'1,11, ˆ,,1 −−− ≡ tHttL yxz  to estimate 

 and ( )'1,1,21,11,1, ,,, −−−−− ≡ tHtHtHtHtH cbbaϕ ( )'1,1,1,1, ,, −−−− ≡ tLtLtLtL cbaϕ  respectively. 
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Applying the RLS formula, we obtain the following updating mechanism: 
 

 
( ) ( )
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 (5) 

 
where . This multivariate version of the recursive algorithm reduces to least squares 
with specified initial conditions for some appropriate values of 

{ HLi ,∈

0,, iiT ϕ  and . 0,iR
 

SIMULATIONS 
 
We simulate equations (1), (4), and (5) to illustrate the results for this model.4 We use a set of 
baseline values in the simulation.5
 
Dual Learning Equilibrium 
 
Figure 1 shows that the equilibrium is ( ) =≡

'
21 ,,, HHHHH cbbaϕ (3.6388, 1.4566, 1.4689, -

0.0909) and ( =≡
',, LLLL cbaϕ ) (0.3379, 0.1407, 0.8914). Since both groups are learning the 

expectations from each other, we therefore call this solution a dual learning equilibrium (DLE). 
Surprisingly, although Group H has full information, they still learn from Group L, although 
Group H puts negative weight on the information from Group L (i.e., =Hc -0.0909≠ 0). The 
highly attentive agents also adjust the weight on their own information and those coefficients do 
not converge to the rational expectation equilibrium (i.e., ≠Ha 3.3333, and 3333.1, 21 ≠HH bb ). 
 
Intuitively, since the model is self-referential, both groups' forecasts (  and ) 
affect the actual value of the endogenous variable ( ). Group L's measurement error creates 
additional variations on  in the model. Thus, Group H adjusts their forecasts because there is 
available information in Group L's forecast measurement error. The result is that the boomerang 
effect still exists in this case as shown in Figures 2 and 3. 

tLt yE ,
*

1− tHt yE ,
*

1−

ty

ty

 
The Boomerang Effect 
 
To determine the extent of the boomerang effect, we vary the size of both 

Le~σ  and 
He~σ in a more 

systematic way. We change the values of 
Le~σ  and 

He~σ  systematically.  The top panel of Figure 2 
represents the coefficients of Group H's PLM.  Note that the first two graphs of the top panel in 
Figure 2 ( Ha  and Hb1 ) do not center around the REE of 3.333 and 1.333 respectively. The third 
graph of the top panel in Figure 2 shows that the size of 

Le~σ  affects the value of Hb2 . It depicts 
the boomerang effect.  The inaccurate forecasts of Group L confound the forecasts of the highly 
attentive agents. The last graph on the top panel also shows that Group H places a negative 
weight on the information from Group L and the weight is fairly stable with the variations of 

Le~σ . 
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We also change the size of 

He~σ  in Figure 3. The measurement error of Group H can only affect 
their own coefficients in this case. When the highly attentive group's measurement error is small, 
they put even more negative weight (less emphasis) on the information from Group L and more 
positive weight (more emphasis) on their own information. In general, the weights on their own 
information and the information from the Group L are trending downward and upward 
respectively as the size of measurement error increases. 
 

CONCLUSION 
 
In this paper, we extend the study of Granato and Wong (2004) and investigate a "Dual 
Learning" model in which both the highly attentive and less attentive groups are learning from 
each other. 
 
We simulate the model and the simulations suggest that a boomerang effect still exists in the 
model.  Surprisingly, we find that the highly attentive agents still learn from the less attentive 
agents although the highly attentive agents have full information. The reason is that the model is 
self-referential and the highly attentive agents adjust their forecasts because there is available 
information in the less attentive agents' forecast measurement error. 
 
Our findings provide a possible explanation that the issue publics who are highly attentive and 
up-to-date on political and economic events and institutions are still willing to observe the 
behavior and expectations from the agents who are less attentive on those events. These findings 
also have important implications for policy since policymakers might be better off by adjusting 
their forecasts according to the measurement error of the public. 
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Figure 1: Simulations of the Perceived Law of Motions 
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The Coefficients in Group H’s PLM 
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The Coefficients in Group L’s PLM 
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Figure 2: Simulations with Varying 
Le~σ  
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The Coefficients in Group H’s PLM 
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The Coefficients in Group L’s PLM 
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Figure 3: Simulations with Varying 
He~σ  
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APPENDIX 
 
Arifovic (1994) and Evans and Honkapohja (2001) present a simple cobweb model in which 
there are n firms in a competitive market that produce a homogeneous product.  Firms face a 
quadratic cost function of production: 
 

 ( ) ,
2
1 2

,,,
s
ti

s
titi qgnfqc +=  

 
where  represents firm i's production cost at t-1,  is the planned production level, and 

 . 
tic ,

s
tiq ,

,0≥f 0>g
 
We assume that all firms face the exogenous market productivity shocks, , which 
are exclusive to their optimal planned production decisions. That is: 

s
tt

s
t vwu += −1'λ

 

  ∑
=

+=
n

i

s
t

s
ti

s
t uqQ

1
, ,

where  is the aggregate supply level,  is the m×1 vector of observable shocks at t-1, and  
 represents white noise unobservable shocks in productivity

s
tQ 1−tw

s
tv 6, (i.e.,  ( )2,0~ sv

s
t iidv σ ).   

 
Each individual firm i chooses the optimal planned individual quantity, , to maximize its 

expected profit, , according to its (rational or nonrational) expectation of  formed at 

the end of time t-1, (i.e., ): 

s
tiq ,

titE ,
*

1π− tp

tt pE *
1−

 

 ( ) ,
2
1max 2

,,,
*

1,
*

1
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⎥⎦
⎤
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⎡ −−= −−

s
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s
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titttit

q
qgnfqqpEE
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ti
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Equation (6) gives us the optimal planned production level for individual firm i: 
 
 ( ) ( )fpEgnq tt

s
ti −= −

− *
1

1
, . 

 
Aggregate supply, , is given:∑ += s

t
s
ti

s
t uqQ ,

7

 
  , s

tttt
s
t vwpEQ ++= −− 12

*
11 'χχ

 
where . ',0 2

1
1 λχχ ≡>= −g

 
The market price, , which clears the market at time t is also determined by market demand: tp
 
   ,10

d
tt

d
t vpQ +−= ϑϑ
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where 0ϑ  is an intercept, 01 >ϑ ,  is an m×1 vector of demand shocks, and  are white noise 
demand shocks. 

tw d
tv

 
In equilibrium ( ), the reduced-form of the model is: s

t
d
t QQ =

 
  (7) ,' 1

*
1 ttttt wpEp ηγβα +++= −−

 
where ,/ 10 ϑϑα ≡ 0/ 11 <−≡ ϑχβ , 12 /' ϑχγ −≡ , ( ) 1/ϑη s

t
d
tt vv −≡ , and ( )2,0~ ηση iidt . In 

equation (7), the market price ( ) is determined by its expectation ( ) and other 
observable factors ( ) and stochastic shocks (

tp tt pE *
1−

1−tw tη ). 
 
 

REFERENCES 
 
Arifovic, J. (1994). Genetic Algorithm Learning and the Cobweb Model. Journal of Economic 

Dynamics and Control 18(1), 3-28. 
 
Bomfim, A. N. (2001). Heterogeneous Forecasts and Aggregate Dynamics. Journal of Monetary 

Economics 47(1), 145-161. 
 
Branch, W. (2002). Local Convergence Properties of a Cobweb Model with Rationally 

Heterogeneous Expectations. Journal of Economic Dynamics and Control 27(1), 63-85. 
 
Branch, W., Evans, G. (2003). Intrinsic Heterogeneity in Expectation Formation, University of 

Oregon, Mimeo, May. 
 
Brock, W., Hommes, C. (1997). A Rational Route to Randomness. Econometrica 65(5), 1059-

1095. 
 
Evans, G., Honkapohja, S. (2001). Learning and Expectations in Macroeconomics. New Jersey: 

Princeton University Press. 
 
Ezekiel, M. (1938). The Cobweb Theorem. Quarterly Journal of Economics 52(2), 255-280. 
 
Granato, J., Wong, M.C.S. (2004). Learning from the Expectations of Other. Working Paper. 
 
Kandel, E., Zilberfarb, B. (1999). Differential Interpretation of Information in Inflation 

Forecasts. Review of Economics and Statistics 81(2), 217-226. 
 
Lucas, R. (1973). Some International Evidence on Output-Inflation Tradeoffs. American 

Economic Review 63(3), 326-334. 
 

 267



Muth, J. (1961). Rational Expectations and the Theory of Price Movements. Econometrica 29(3), 
315-335. 

 
Stein, J. (1992). Cobwebs, Rational Expectations and Futures Markets. Review of Economics and 

Statistics 74(1), 127-134. 
 
Wenzelburger, J. (2002). Global Convergence of Adaptive Learning in Models of Pure 

Exchange. Economic Theory 19(4), 649-672. 
 
                                                 

1,2,2,5.0,5
221 =

1 See Evans and Honkapohja (2001) for the basic background on adaptive learning. 
2 See Appendix for the details of cobweb model. 
3 Kandel and Zilberfarb (1999) argue that people do not interpret the existing information in an 
identical way.  Using Israeli inflation forecast data, they show that the hypothesis of identical-
information interpretation is rejected. 
4 We would like to thank Isaac M. P. Wong for his assistance in these simulations. 
5 The baseline values are:  and .1=ησ  =====−==

HL eewx σσσσγγβα
6 Branch and Evans (2003) only allow for exogenous unobservable productivity shocks. We 
generalize this situation by assuming that firms faces both observable and unobservable market 
productivity shocks,  and v , respectively.  Both shocks are independent of each other (i.e., 1−tw s

t

( ) 01 =−
s
tt vwE 1−tw s

t
s
tiq ,).  We further assume that  and v  are independent of . 

7 Without loss of generality, we assume f = 0. 
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