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ABSTRACT 
 
Because of the nature of conventional 0-1 part-family incidence matrix, a multi-cell flexible 
manufacturing systems (MCFMS) using conventional part-family formation algorithms, such as 
array-based clustering, similarity coefficient-based clustering, and mathematical programming, 
in a cellular manufacturing mode can assign a part family only to one machine cell. The 
consequence is that each part type has a fixed route through the system. When each part family 
is limited to a fixed route through the system, the performance of an MCFMS is diminished. This 
is because the inherent flexibility of the MCFMS is not fully utilized. This research proposes a 
fuzzy dynamic routing method that applies a fuzzy clustering algorithm combined with a 
certainty factor procedure to suggest the favorable route in an MCFMS. Computational 
simulations show that the proposed dynamic routing method that seeks to balance workload in 
an MCFMS is more effective than the fixed routing method in reducing mean flowtime, mean 
tardiness, and mean absolute lateness, in an environment characterized by high system 
utilization (85% or higher) and under a variety of demand patterns and machine breakdowns. 
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1. INTRODUCTION 
 

A multicell flexible manufacturing system (MCFMS) is a type of FMS which consists of a 
number of flexible manufacturing cells (FMCs) connected by an automated material handling 
system (MacCarthy and Liu 1993).  The major advantage of MCFMS is setup time reduction. 
This is because setups can be simplified by dedicating the machines in a cell to a part family 
with similar processes.  Other advantages include: reduction in work-in-process inventory (WIP) 
and in manufacturing lead time (Greene and Sadowski 1984), and easier to manage workers, 
tools, pallets, ... ect. due to the limited size of each machine cell (Kusiak and Heragu 1987, 
O’Grady 1989).  In addition, the transformation from traditional job shop to MCFMS may result 
in increased operator responsibility and increased job satisfaction, both of which can increase 
product quality and worker productivity (Garza and Smunt 1991). 
 
A main disadvantage of MCFMS is a loss of  process flexibility in dealing with job mix and 
demand changes which lead to a workload imbalance in the system (Ang 1995).  This is because 
MCFMS dedicates specific machines to the manufacture of part families.  Other disadvantages 
of MCFMS are the increased capital necessary for additional machines and tools (Garza and 
Smunt 1991). 
 
In a recent research, Ang (1995) proposed an inter-cell workload transfer strategy to overcome 
the problems caused by the loss of process flexibility in MCFMS and to improve shop 
performance by transferring workload from a congested cell to an alternative, less congested 
cell.  The effect of the inter-cell workload transfer is comparable to alternative routing both of 
which can improve load distribution of shop floor (Ang 1995).  The results have shown that with 
a small number of inter-cell transfers the performance of  the MCFMS can be significantly 
improved. 
 
On the other hand, Garza and Smunt (1991) found that even small amounts of inter-cell flow can 
have a substantial negative impact on mean flow times and WIP in a manufacturing cell.  In their 
experiments, Garza and Smunt considered inter-cell flow not only as a result of alternative 
routings in the shop but as the lack of processing capability within a cell.  The research tested 
both the effect of inter-cell flow and the effect of machine dedication under a wide range of 
conditions. 
 
In a very recent research, Wen, Smith, and Minor (1996) suggested that inter-cell flow, as a 
result of alternative routing, has positive impact on MCFMS performance under high system 
utilization but has negative impact under low system utilization.  Since routing among FMCs 
does not always benefit the shop performance, it is important in practice to make a proper 
intercell routing decision. A right routing decision potentially improves performance by 
eliminating the bottlenecks that often present when alternate routes are not feasible. In this 
research we proposed a fuzzy dynamic routing method which suggests an intercell routing based 
on the current workload of FMCs and changes in the operating conditions.  The proposed 
dynamic routing method is simple, and allows for locally revising schedules in real time. 
 
 

2.  THE PROPOSED DYNAMIC ROUTING METHOD 

  334466



 
Routing in MCFMSs differs from that in a conventional job shop because of the availability of 
alternative resources resulting in routing flexibility both within an FMC and among FMCs.  The 
proposed dynamic routing method uses a fuzzy part-family formation method, which identifies 
routing options among FMCs. To select the preferred route the method generates certainty 
factors that provide scores for the alternative routes. 
 
Fuzzy Part-Family Formation 
    
A conventional manufacturing cell is capable of processing only a fixed number of part types; 
thus, conventional part-family formation methods are not appropriate for FMCs. The 
conventional methods, such as array-based clustering (King 1980, King and Nakornchai 1982), 
similarity coefficient-based clustering (McAuley 1972, Seifoddini and Wolfe 1986), and 
mathematical programming (Kusiak 1987; Gunasingh and Lashkari 1989), can assign a part to 
only one machine cell.  Thus, each part type has a fixed route through the system, as shown in 
Figure 1.  When each part is limited to a fixed route through the system, the performance of an 
MCFMS is diminished because the inherent flexibility of the FMS is not fully utilized (Chen and 
Chung 1991).   
 
Figure 2 illustrates that a fuzzy part-family method that assumes part families are not mutually 
exclusive allows for dynamic routing of part families among FMCs.  The rescheduling method 
we propose provides priorities for all the possible routes among FMCs.  Route priority is based 
on the "degree of membership" of a part in the various part families associated with cells.  For 
example, the first routing priority for P1 is cell 2 because it has the highest degree of 
membership (.7) associated with family 2 and the second (.2) and third (.1) routing priorities are 
cell 1 and cell 3, respectively.  
 
All the conventional part-family formation methods implicitly assume part families are mutually 
exclusive and collectively exhaustive (Li and Ding 1988; Xu and Wang 1989; Chu and Hayya 
1991).  Suppose that n parts are to be grouped into c families.  The conventional methods assume 
that disjoint part families exist in the data set; therefore, a part can only belong to one part 
family. The classification results, thus, can be expressed as a binary matrix such as illustrated in 
Figure 2, where n is the number of parts and c is the number of  families,  with n ≥ c.  It is also 
required that each matrix entry uij = 0 or 1,  and 
          c 

    Σ  uij = 1,      j=1,2,...,n       (1) 
        i=1   

    
 

          n       
   Σ  uij > 0,      i=1,2,...,c       (2) 

        j=1 
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These requirements insure that uij equals 1 if the jth part belongs to the ith part family, each part 
belongs to exactly one part family, and each part family consists of at least one part. 
 
However, part families need not be defined so sharply; rather, the separation of part families is 
often fuzzy.  Suppose variable uij may have any value between 0 and 1; that is, a part may 
belong to several part families at the same time with different degrees of membership.  In fuzzy 
clustering, the classification results can be expressed as in Figure 2,  where 

   0≤ uij ≤1,     i=1,2,...,c;   j=1,2,...,n      (3) 
and constraints (1) and (2) still apply. 
 
The fuzzy c-means clustering algorithm is adapted in this paper to handle the cell formation 
problem. The clustering algorithm is based on distance from the clustering center, a smaller 
distance associated with a higher degree of membership. The clustering algorithm is now briefly 
discussed below. 
 
Let p is the number of machines and let µk jkx( ) be the 0 or 1 representing the relationship of the 
jth part to the kth machine.  The 1× p vector Vi is created to serve as the representative point for 
parts in the ith part family.   
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The distance of the jth part from the ith part family is: 
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and weighted sum of squares of the distance of the jth part from the C part families is: 
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The total weighted sum of squares of the distance of n parts from the C part families is: 

( )( )J U V u x vij k jk ik

i

c

k

p

j

n

( , ) = −
= ==
∑ ∑∑

1

2

11
µ  

In order to increase the distance between sample reference patterns, a weighting coefficient m 
(m>1) can be used here: 
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An algorithm (Lou, Sun, and Chen 1983) for minimizing the objective function is given as 
follows: 
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Based on the final fuzzy classification matrix U, part j is assigned to family i if  
u uij kj

k c
=

≤ ≤
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The fuzzy clustering approach not only reveals the specific part family (or FMC) that a part (or 
machine) belongs to, but also provides the degree of membership of a part (or machine) 
associated with each part family (or FMC).  As illustrated in Figure 2, the fuzzy clustering 
algorithm produces a machine cell-part membership matrix.  The values in the table indicate the 
degree of membership of each part in each part family or FMC.  For example, the grades of 
membership for part 2 in FMC-1 and FMC-3 are .60 and .40. Since part 2 has the higher grade 
with FMC-1, it will be assigned to FMC-1. However, because part 2 has a fairly large grade with 
FMC-3, it could, if needed, also be assigned to FMC-3 under certain conditions, such as a 
machine breakdown in FMC-1 or  an unusually  high demand for part family 1.  
 
In summary, the fuzzy clustering algorithm provides extra information that is not available in 
conventional algorithms. This information permits managers to make more informed dynamic 
routing decisions by allowing for flexible assignment of parts to FMCs. The information would 
be especially useful in balancing FMCs workloads. The 'degree of membership’ is somewhat 
equivalent to  'degree of effectiveness’ with which any part can be produced within a given 
FMC; the higher the degree of membership, the higher the degree of effectiveness. Certainty 
factors, as described in the next section, provide a real-time basis for selecting effective routing 
alternatives. 
 

3. THE SIMULATION MODEL 
 
The purpose of this simulation is to compare the performance of the proposed dynamic routing 
method with the performance of the fixed routing method under a variety of conditions.  The 
system under study is similar to the one studied by Seifoddini (1989) and Wen et al (1996). The 
machine-part incidence matrix used to group machine cells and form part families is given in 
Table 2. 
 
The fuzzy c-means clustering algorithm was coded in SAS Interactive Matrix Language (IML).  
The degrees of membership of  parts associated with part families and machines associated with 
machine cells are given in Table 3.  The machine cells and part families are formed accordingly. 
The FMC-1 consists of machines A, B, D, E, F, and K and parts 1, 2, 3, 5, 7, 8, 11, 12, 15, 16, 
19, 20, 21, and 22.   The FMC-2 consists of machines C, G, H, I, and L and parts 4, 6, 9, 10, 13, 
14, 17, and 18.  Part #5, for example, belongs to part family 1 with .53 degree of membership 
and to part family 2 with .47 degree of membership.  In FMS implementation, both cell 1 and 
cell 2 are feasible routes for part #5, but generally machine cell 1 is the favorable route.  Notice 
that the part families for both the dynamic routing approach and the fixed routing approach are 
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the same, determined using the fuzzy c-means clustering algorithm.  The difference is that the 
dynamic routing approach will allocate parts into different machine cells based on current 
certainty measures. 
 
Extensive details of the configuration of the simulated system are provided in Table 4.  A 
simulated model of the FMS described above was developed using SLAM II (Pritsker 1995).  
Part interarrival times are exponentially distributed.  Each part is processed by a series of 
machines.  The number of operations per part is between 2 and 7 as shown in Table 2, and the 
processing times of operations range from 30 minutes to 50 minutes.  The tooling system is not 
modeled, and an infinite number of pallets are assumed.  Buffer capacity at each cell is 
unlimited.  Thus, a part completing a current operation waits in the buffer at the cell until an 
AGV is available.  An AGV transfers only one part at a time, and time to travel between any two 
machines is the same.  There is only one AGV in each machine cell.  The dispatching rule is 
FCFS. 
 
The experimental conditions used to compare the two routing methods included six system 
utilization levels, two demand patterns, and a machine breakdown scenario.  Machine utilization 
rates commonly found in the literature are in the 75% to 90% range.  This paper evaluates the 
routing methods at 70%, 75%, 80%, 85%, 90% and 95% utilization.  In the normal case demand 
pattern all parts are equally likely to be selected as the next arrival to the system.  In one of the 
alternative demand patterns the workload is altered to favor arrival of parts with particularly high 
degrees of membership in their part families, high-fit parts.  The remaining demand pattern 
biases the workload towards parts with low degrees of membership in their part families, low-fit 
parts.  Machines are randomly selected for breakdown.  A machine breakdown occurs in the 
system on an average of every 50 minutes (exponentially distributed), with each breakdown 
lasting 60 minutes.  A total of 480 simulation runs (two routing policies × two demand patterns × 
a machine breakdown scenario × six system utilization levels × 20) were made. 
 
The length of the transition period can be determined by plotting measures such as the number of 
parts waiting at the bottleneck machines over time (Adiga and Dessouky 1991).  The average 
number of parts waiting at machines C, D, K, and L (which are busier machines) were plotted 
over time.  System steady state was considered to have occurred before 200 orders. For each 
simulation run data is collected on 1000 orders after statistics for the first 200 part orders are 
discarded.  Therefore, each simulation run comprises 1,200 jobs.      
 
In these experiments due dates of jobs were determined by allocating allowances to a job for the 
performance of its various operations.  The type of due date assignment that allows the producer 
the freedom to set due dates is known as  endogenous due date assignment.  Sabuncuoglu and 
Hommertzheim (1992) found the TWK (total work content) rule effective, and it has been widely 
used in job shop studies.   The TWK rule was used to set the part due dates as explained in Table 
4. 
 
Several criteria have been used in FMS research to measure shop performance.  Due date 
performance and reduction of average inventory level are commonly stressed in today’s 
manufacturing environment, and the three performance measures used in this research reflect this 
emphasis.  Mean flowtime, mean tardiness, and mean absolute lateness of part orders are 
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reported.  Lower mean flowtimes indicate reduction in average inventory.  Mean absolute 
lateness measures reliability in completing orders near the due date by penalizing both early and 
late completion.  Mean tardiness has been the most popular measure of due date performance in 
the published literature, indicating the average time beyond the due date for order completion. 
 

4. RESULTS AND ANALYSES 
 
In order to detect significant differences due to the influence of different routing methods, we 
perform paired comparison between the values of performance measures, namely, flowtime, 
tardiness, and absolute lateness.  Carmer and Swanson (1973) conducted extensive Monte Carlo 
simulation studies of several multiple comparison methods.  They reported that the least 
significant difference (LSD) method is a very effective test for detecting true differences in 
means if applied only after the ANOVA F-test is significant at p≤ .05.  In this study, we use the 
LSD method for paired comparisons of the mean values of the performance measures.  The 
statistical analysis in this study was conducted using SAS, version 10.12.  All the tests were 
conducted at the 0.05 level of significance.  Raw data obtained from the simulations were fed 
into the computer.  In a pilot run, the mean values and the variances of the performance measures 
were computed for 85% system utilization.  ANOVA results on these data appear in Table 5.  All 
three analyses indicate that significant differences between dynamic routing and fixed routing 
methods exist. As can be seen, all three performance measures are significant at p≤  .0001 
confidence level. 
 
To confirm or disprove the statistical results that the proposed dynamic routing method 
outperforms the fixed routing method at 85% utilization level, we do two more tests, in which 
the dynamic routing decisions are made with wrong and random degree of membership.  The 
purpose of these tests is to see whether the correct degree of membership is the major factor 
affecting the quality of the dynamic routing decision making.  If there are no significant 
differences between the dynamic routing method using correct, wrong and random degree of 
membership, we may disprove the previous finding that the proposed method works better. 
 
The results are shown in Table 6.  As can be seen, the right degree of membership does help to 
make a good dynamic routing decision, which improved the mean flowtime performance.  
Therefore, we conclude that the proposed dynamic routing method outperforms the fixed routing 
method at 85% system utilization level. 
 
4.1 Different Machine Utilization Levels 
 
Figure 3, 4, and 5 clearly suggest that there is a performance switching point between the routing 
methods for all three performance measures. The performance switching point is where the 
system performance switches from favoring fixed routing to dynamic routing. In this experiment, 
the switching point is at between 80% and 85% system utilization. 
 
For alternative system utilization levels the mean flowtimes are shown in Figure 3 for both the 
proposed dynamic routing method and the fixed routing method.  In general, as the system 
utilization increased, the relative performance of the dynamic routing method improved.  For 
example, at 85%, 90%, and 95% utilization levels, approximately 29%, 32%, and 19% 
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reductions in the mean flowtime were achieved by the dynamic routing method.  However, at 
70%, 75%, and 80% utilization the fixed routing method showed better flowtime performance. 
This observation can be explained.  At the low utilization level, there are fewer jobs in the 
queues.  As long as the machines are at low utilization, parts should have shorter flowtimes when 
processed in the cells designed for their own part families.  Any procedure that can assign parts 
to another cell may harm mean flowtime performance.  On the other hand, at a high utilization 
level the dynamic routing method worked better because the workload was reduced in the busier 
cell, resulting in fewer long queues.  
 
Figure 4, and 5 also show the mean tardiness and mean absolute lateness of the routing methods 
at varying levels of system utilization, when the due date allowance parameter is ten (i.e., due 
date of a part is ten times greater than its total processing time); this resulted in approximately 
30% of the jobs finishing tardy, using the FCFS sequencing rule.  Again, the dynamic routing 
method outperformed (by 29.8%, 39.7%, and 28.4% in tardiness and by 26.4%, 40.7% and 
23.1% in absolute lateness) the fixed routing method at 85%, 90% and 95% utilization.  
 
It is interesting to note that the standard deviations under the dynamic routing method are 
sometimes greater.  This is probably because the dynamic routing method reduces the workload 
in a high utilization cell by increasing the disruption in a low utilization cell. 
 
4.2 Different Types of Demand Patterns 
 
 In the previous experiments each part was equally likely to be selected as the next order in the 
system.  In this experiment the degrees of membership of the parts are sorted in descending 
order.  The skewed-right demand pattern alters demand to favor high-fit parts, and the skewed- 
left demand pattern alters demand to favor low-fit parts.  What is the result of having increased 
demand for high-fit parts or low-fit parts?   Figure 6 shows the impact  of the routing methods on 
mean flowtime, mean tardiness, and mean absolute lateness when the demand pattern changes to 
skewed left (low fit).  The dynamic routing method improved flowtime (by 21.8%, 36.4%, 
38.4%, 25.7%, and 14.4%), tardiness (by 15.5%, 36.9%, 41.4%, 29.0%, and 13.9%), and 
absolute lateness (by 1.2%, 27.7%, 35.3%, 27.2%, and 16.4%) at 75%, 80%, 85%, 90%, and 
95% utilization.  The performance measures for skewed right (high fit) pattern are shown in 
Figure 7. The high fit pattern deteriorates the advantages of the dynamic routing method. 
However, the dynamic routing method still improved flowtime (by 4.2%, 5.9%, and 16.9%), 
tardiness (by 4.7%, 26.0%, and 9.3%), and absolute lateness (by 4.2%, 5.9%, and 4.5%) at 85%, 
90%, and 95% utilization. Not surprisingly, when the higher demand is for the high-fit parts, the 
performance measures are better. 
 
It is interesting to note that compare to Figure 3, 4, and 5 the performance switching point is 
moving to the left (toward lower system utilization level) in Figure 6 with low fit demand pattern 
and to the right (toward higher system utilization) in Figure 7 with high fit demand pattern. This 
can be explained as follows. With high fit demand pattern, most of parts are highly fit to the 
FMC that are designed for them. Any intercell movement is most likely to increase disruption in 
an FMC. Not until the shop becomes busy (85% utilization or higher) can the dynamic routing 
method gain performance advantages by balancing workloads among FMCs. With low fit 
demand pattern, on the other hand, the general purpose machines in FMCs can easily become 
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bottlenecks with many low fit (highly disruptive) parts. The dynamic routing method can, 
therefore, improves the system performance even at lower system utilization by releasing 
temporal bottleneck machines in FMCs. 
 

5.  SUMMARY AND FUTURE RESEARCH 
 
In this research, we presented a dynamic routing method designed for the routing of part families 
among FMCs.  The proposed dynamic routing method was compared with a traditional fixed 
routing method using three different performance criteria.  The dynamic routing method 
performed much better than the fixed routing method on all three performance measures at high 
system utilization levels.  However, when the cells were at low utilization, the fixed routing 
method performed better.   The dynamic routing method showed better flowtime, tardiness, and 
absolute lateness over a varied set of distributions of part demand and machine breakdowns. 
 
Despite the indication of advantages from the implementation of the dynamic routing method, 
further research is warranted.  In this experiment, the performance switching point is occurred 
between 80% and 85% system utilization. It would be interesting to know how this point varies 
with the size of FMCs, the number of part families, or different dispatching rules. Knowing the 
behavior of the switching point will help shop managers to choose right routing methods.  While 
this study examined dynamic routing among FMCs at the system level, future research should 
also examine the impact of the dynamic routing method within the FMCs at the cell level.  It 
would be interesting to see the effect of combining dynamic routing among FMCs and within the 
FMCs, that is, both at the system and the cell levels.   
 
The aim of the dynamic routing approach is to take full advantage of the inherent flexibility of an 
MCFMS.  While the results reported here appear promising for systems with high utilization 
rates, additional studies will be required to assess the scope of MCFMS configurations that 
benefit from dynamic routing.  Implementation of the dynamic routing procedure as presented 
here does require a general purpose machine in each cell of a company’s MCFMS layout, but the 
calculations required in real-time for the routing decisions are very simple. Unlike most of 
dynamic routing methods that require to regenerate the entire set of operations including those 
unaffected by the change in conditions and demands. This is time consuming, and often results in 
response times unacceptable to the user. 
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