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ABSTRACT

In the determination of the optimal policy of an inventory model with a stochastic demand which
includes the calculation of the reorder point and the order size, one has to deal with mean rate of
demand, standard deviation, safety factor, forecast and lead-time. The calculation of the re-order
point is typically based on the assumption that the mean rate demand is deterministic as a function
of time. This assumption is by far removed from reality. A more appropriate assumption would
involve the use some sort of probability distributions to represent the units demanded including
the lead-time to account for the increasing uncertainty in the market environment. Under the
stochastic environment, Hadley and Whitten developed two types of backorder inventory
formulas; an approximate and exact formulae for Poisson and Normal lead-time demand
distributions with the assumption that there is no correlation between two period demands. In
many practical situations, the period demands are not independent, but exhibit a serially
correlated process. (An, Fotopolo, and Wang 1989); (Charles, Marmorsten, and Zinn 1995). In
this research paper, we will develop the formula for the calculation of reorder point, safety stock
and order quantity of Hadley and Whittin’s (1963) exact inventory model when the units
demanded are generated by a serially correlated process and can be represented by ARMA Box-
Jenkins time series model for when the lead-time is both deterministic and probabilistic. ARMA
time series process generating demand with deterministic and stochastic discrete lead-time.

The distribution of forecast errors from the calculation process in Box-Jenkins’ (1976) ARMA
analysis will be used as the measurement of the estimation with which the reorder point and safety
stock are determined. In the first part of this research, the determination of the model’s reorder
point is based on the assumption that the procurement lead-time is a random variable generated
by an ARMA process with constant lead times. Later on, we would investigate the problem in
attempting to account for the ARMA system with the probabilistic discrete lead-times.
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I. INTRODUCTION

The control and maintenance of inventories of physical goods is a problem common to all
enterprises in any given economy. Two fundamental questions that must be answered in
controlling the inventory of any physical goods are when to replenish the inventory and how
much to order for replenishment. EOQ models answers the question of how much to order, but not
the question of when to order. The latter is the function of models that identify the reorder in terms
of a quantity: the reorder point occurs when the quantity on hand drops to a predetermined
amount. The amounts generally includes expected demand during lead time and perhaps an extra
cushion of stock, which serve to reduce the risk of experience a stock-out during lead time
especially in the environment when variability is present in demand or lead time or both. The
following four factors are being used in determining the reorder point quantity

1. The rate of demand (usually based on a forecast value).
2. The length of lead-time.

3. The variability of demand/or lead-time.

4. The degree of acceptable stock-out risk.

Taking into the consideration of these four factors, Hadley and Whittin (1963) suggested both
approximate and exact <Q,r> models with backorder which attempts to answer both two
fundamental questions mentioned above. Their expected costs included in the model are, the

expected annual setup, holding, and the shortage costs. Under the normal distribution
environment, the average annual cost is

K = %A+ IC[%+ r— 1] 7E(Q, 1) + (z+ 1C)B(Q, 1)

where
D = Average annual units demanded

Q = Order quantity
A = Cost per order

I = Carrying charge in dollars per dollar per year

C = Unitcost of the inventory
I = Reorder point
M = Average lead-time demand
7 = Backorder cost in dollars per backorder

7t = Shortage cost in dollars per unit year of shortage
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E(Q, r) = The expected number of backorder incurred per year

- %[a(r)—a(w@)]

a(v) = O';/{V_—'uj —(v— ﬂ)q’(v_—ﬂj
) o
#(*) = The normal density function

®(*) = The complementary cumulative of the normal distribution

B(Q,r) = The expected number of backorders at any time

- %[ﬂ(r)—ﬁ(HQ)]

B(v)=0.5[c2 + (v —u)zlcb[v‘—”j ~0.50(v— u)¢ (V‘”j
O O

Il. DETERMINING THE MEAN AND VARIANCE OF THE LEAD-TIME DEMAND

In order to compute the reorder point with a safety stock that will meet a specific service level, we
have to know the probability density of the lead time demand, the sum demand during the lead
time period, and the variance of the total lead time demand.

When the demand can be represented by an ARMA process [Box et al, 1976], the conditional
probability distribution p(z,_ |z.,Z_ ,...... z,) of the future value z_ of the process will

t-11

be Normal with mean Zz(l)- the forecast of the future z,,,from the origin t, and variance
{1+ z'j—:lll,,f}gg and then p(z;,y, Zeyy 1o Ztgn | 24y Zi_q,---21) 1S @ multivariate with mean

z (1)
Z, = , where Z (l)is the forecast value of z, , provided that
z(1)
ZivZy fyeeeinnn Z, values are available, and the covariance matrix
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where g j ={1+2 ',-;11‘// £} and 911+j = Z:Q%V/W/M, where y  =1.

The total amount of demand during the lead-time period is

S, =z7,,+1Z7 ,, + ... z, =UzZ ,whereu = [11.. .1,1] and
i Zt+| ] _2t(|)_
Zii1 .
Z, = and E(z,)= =Z,
Zt+2
L 2t ] 14D
E(S{)=UE(Z{) =UZ,= 7;(1) + 2,(1 = 1) + ceeeeee +7,(1)

= 2 | |
Var ($.)=Uz Z{UT =0 ¥i X 19j

As we can see from the above analysis that, for Gaussian demand like ARMA process, the
problem reduces to identifying the first two moments of the distribution of the demand rate for

each period during the lead-time period.

The following steps will be used to compute the variance of a given lead-time.
1. Calculating of the Vi weights using the following equations:
wi1=¢1-0; J
Vo=@t @, — 0,
Wi=@QW i1+ + @oid¥W j_p-d — Y
where o =1,y ; =0for j<0 and 6j=0for j>qg.and ¢ ;
and ¢ ; are the coefficients of the autoregressive and moving average in ARMA

2. Calculating g, andg;; .

3. Compute Z,(i),for j=1,... |, the forecast values using the difference equation
forms and then compute E (S;) =2, (1) + Z,(1 -1) +........ +2,(1)

|1
4. Compute Var(S;)=c2Y Y 9ij
i=1j=1
See Appendix | — the Excel template for the computation of the mean and variance of the forecast
error distribution.
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Example. Suppose that the lead-time demand can be represented by an ARMA(2,2)
model as
Z,-16Z;_ ;+0.62Z,_, =a, —0.82a;_; + 0.423;_,

Using the Excel Template in Exhibit I, the value of standard deviation of the lead-time
demand = 51.47883., for o, =5.78.

I1l.  SOLUTION COMPUTATION METHOD BY SOLVER ( SEE APPENDIX I1)

According to Hadley and Whitten’s (1963) analysis, the terms «(r+Q) and  A(r+Q) are

negligible in the usual case. Thus for a given value of reorder point r, the optimal value of Q can
be determined from the following formula

_ [2DA(r)
Q= IC

7_z+ IC

where  A(r) = A+ za(r) + 2(
K(r) =2DA(r)IC + IC(r—pu).

If lead-time periods are treated as discrete random variables as suggested by Boone et al (2000),
then our expected total cost of the model can easily modified to incorporate the probabilities of the
time periods as follows.

Kp(r)=2DA,(r)IC +1C(r — u) , where

)A(r) and the average total cost for a given value of ris

Ap<r)=mp<r)+2(”+[lc))ﬂp(r)

M _ M _
ap(V) = LZ_:lUM(V 'ULJPL - Z(V—ﬂl_)‘b(v G'ul‘]pl_

oL L=1 L

M ~ " )
ﬁp(v)=0-5Z[0L2+(V—ﬂL)2]CD(V ﬂLJpL —O.SZGL(V—,ULW(V 2P p,
L=1 oL L=1 oL

and p, here is the probability that there are L periods in the lead-time of the model.
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The above figure shows the average total cost curve of the following parameters.

D = 700 units per year

C = $50.00 per unit of the inventory
I = $0.20 per dollar per year

A = $15.00 per order

7 = $1.00 per backorder

T

$15.00 per unit year of shortage

Using the Solver, the optimal solution is r~ =81.97757,Q" =410.19524, K(r ) =1921.688. See
Appendix II.
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Appendix la

B C ] E F H I J K i I (8] P ] R
B [ D E H | J K i I (0] B [l H
1 Infinite Form Factor
2 AR-Factor =il =il *Si? oid =I5 =i =i7 =il =i10 =il =il oil3 oild
3 1 1.8 1 1.8 0 33616 3689 3.951|4.1611 4 463 45705 4B564| 47251 478017 482407
4 2 -0.8 1ﬁ 1.8 2952 3.362| 3.683[3.9514 4329 44631 45705 465644725127 4780
5 3 ] 0 "ﬁ\ 1 244 2952 3.362| 3.6893 4161 43289 4. 46313 4.5705| 465641 4 72513
B 4 ] 0 "'-:\ ] 1.8 244 295233616 3851 41611 432891 4.4631| 457050 4 BB
7 5 0 0 ] 1 1.8] 2.44] 28952 J.689] 3.9214) 416114 43289 4 463131 4.5704
i 5 ] 0 \Ij‘ 0 1 1.8 244 3362 36893 395142 4.1611| 432891 4 46313
9 7 ] 0 \D \ 0 0 1 1.8 2852 33616 3.68028) 3.9514| 4 16114 4 3289
a ] 0 E{ \ 0 ] 0 ] 1 244 28952 33616 368933951420 416114
9 0 0 0 \EI 0 0 ] ] 1.8 2.44 2952 3.3616| 368925 3.9514]
10{ [=SUMPRODUCT($E43:4E423,05:023)-E425,then 3] 0 0 1] 0 1 1.8 2441 25952 33616! 3.63929
11] |Copy ko O3, 0 —= £ Ll il - l 1.8 244 29520 33614
=013, then copy bo &3 by dragging. -
12 0 Highlight D: 23, then copy by dragaing ko 023, I 1 18 2.44 2.95]
13 ] 1] ] ] 1] 1] 1 1.8 244
14 ] 0 0 ] 1] 1] 0 1 1.4
15 ] 0 0 0 0 0 1] 0 0 ] a ] ] ]
16 0 0 0 0 0 0 0 0 0 0 0 ] 0 0 (]
17 0 0 0 0 0 0 1] 0 0 0 0 1] 0 0 (]
18 ] 0 0 0 0 0 1] 0 0 ] a 1] ] 0 (]
19 ] 0 ] 0 0 0 ] ] ] ] a ] 0 ] (]
20 ] 0 ] ] ] 0 1] 0 0 ] a ] ] ] (]
21 ] 0 ] ] ] 0 1] ] ] ] a ] ] ] (]
1] 0 0 (]
0 0 0 0 0 1] 0 0 0 0 1] 0 0 (]
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Appendix Ib

MA-Factor Thetal Theta? |Theta3 | Thetad [Thetah|Thetab| Theta?| Thetad [Theta9Thetal1d| Theta11|Theta1?| Theta13! Thetal
Lead Time 1 2 3 4 5 6 7 8 9 10 1 12 13 14
Phi
Lead Ti 1 1 G

1 1.8 1.8 13 =aUMPRODUCTIRES3: 58523 E E2R-

2 244 244 Fi25

3 2952 2952

4 33616 33616

a5 3.53928 36393

Bl 3951424 39514

7| 4161139 4 1611

gl 4.328911 4 3289

O 4453129 4 4531

10( 4570503 4 5705

11 4.656403 4 Bobd

12 4725122 4 7251

13 4.730098 4 7801

14| 4824078 4 8241
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Appendix Ic

=SUMPRODUCTEOFFSET{Ph, ABSIBS46-$A249), 0, MIN(ES4E, $449Y), OFFSET(PH, 0,0, MIN(ES4E, $449)0)

L+J

L 1 ‘L/z 3 4 5 6 7 8 9 10 1 12 13 14

1 1 18] 244| 2952| 3.3616| 3.6893| 3.9514| 4.161| 4.329]|4.4531| 4.5705| 4656 4.7251| 4.7301
2 18| 424] 6192| 7.754| 90029 10.002]| 10.802] 11.44| 11.95]12.363] 1269 12.95] 13.162] 13.3293
3 244 5.192[ 10.194] 13.38] 15.955| 18.005| 19 644| 2096 22122843 23.515| 24.05] 24 .481| 24 8251
4 2052| 7.754] 13395 18.01| 23.318| 26847 20 669| 31.93] 33.73(35.179( 365.335] 37.25 25| 38,5002
5 3.3516| 9.003]| 15.955( 23.32| 30.208] 3572 40.13| 4365| 4548| 4873750543 51.09| 53144 54.0650
6 3.68928 10[ 18.005] 26.85| 35.72| 43.819|50.298| 55.48| 59.63|62.945| 65.509| 67.72| B9.421| 70.7794
7 3951424 108[19.644| 2967 40.13|50.298|59 433| 66.74| 72.59| 77 264| 81.005 84| 85.393| 853088
8 4161139| 11.44| 20955] 31.93| 43657| 55.481|66.741| 76.75| 84.75|91.158| 95.262| 100.4| 103.65| 106.284
9 4328911| 119522004 33.73| 46.48| 59628|72.587| 84.75| 95.49|104.07| 11094 116.4| 12084 124 353
10 | 4453129 12.36| 22.843| 35.18| 48.737| 62.945| 77 264| 91.16] 1041 115.41| 124 47| 131.7| 137.53] 14217
11 | 4570503 12.69] 23 515( 35.34| 50543 F5.509( 81.005] 9528 1109124 47| 136.3] 145.8| 153.32] 159.375
12 | 4656403 12.95] 24.052( 37 26| 51.988| 67.722(83.093] 100.4| 116.4{131.73[ 14575 158| 167.76] 175568
13 | 4725122 13.16] 24 481 38| 53.144| 5942186203 103.7| 1208[137.53] 15332 167.8] 180.31] 190.344
14 | 4.780098| 13.33] 24.825| 38.59| 54.069| 70.779( 58.309| 106.3| 124.4]{142.17| 159.38] 175.6| 190.34] 203.155
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Appendix Il - Solver s olution

D A IC M Pih Mu 5d
oo 15 10 1 15 200 5147883
r z Density | Complement Alpha Beta Alr) K(r} air)
150 2913818 864E-05 09952 149 7363 12552 0278 EA30556] 1420 B379731 202 537973
160: -2 7196i1 S53E-04 093967 13955061 11059.24353 5505950 137658794 277 6357914
1705 2525512 717E-4 0.9942 12926 9719.4438 491 3857 13L2.560925; 262 2560925
180 233114 479E-4 [1.99m 1188380 8442 230 435 34631 12ER7T4E54  24B BYTAES4
190;  -2.1365;7 095E-04 09537 10824271 T256. 7755 JE2.4154:  1M38525375 231 3525375
200;  -1.9425:1 DS0E -5 0.9740 97 45408 B163.1395 Jo2aez: 1157753055 215 7753055
HM0i 748311 579E-03 0.9508 SE4EX:  S1E2.580 28584051 1004418471 2000441 847
X0 - 554002 M BE-03 0939 75.3072: 42577035 242 3650 1042 051092 1542051092
2305 -1.35595:2 995E -5 0.91:3 B4 0577 5452193 202 3603 95316495 168316495
20 A 1BS5i3.854E-03 057 L280551  ZTs0.08M 1BE 050 924 0300457 153 4939940
2a0: 0871514 .839E -03 0.5343 41 9535 2154 5640 1339125 8692244053 136 924406
XH0; 077705 T94E -0 0.7514 3159538 1666.5230 106.0740; S15.6204406; 1218620441
2P0i 055286 BE4E -3 0720 M .A4r3 12831290 B2 7R3 YYBASABRIT! 107 B454E683
Zo0:  J0.3585: 7 365E -3 06512 13,4055 996 5h44 Gid 001 FAEE102511 94 BE1 02511
290 019457 821E-03 05770 GATT 7954243 495807 FI3445406; 5331445406
0 0.0000: 7 979 -3 0.5000 04107 BE2 5175 A9.07M FAOBN0ESE: Y3 OE00ES2E
0 019437 521E-03 04230 -3.8273 5796106 31873 FET.9996075: 66 79996075
320 035557 365E-05 03455 -5.5972 2281706 2726860 5178352061 G1 . 75352061
30 (58286 BR4E -3 0.2a0 -B.0577 491 9199 2 EM05:  BESJEFEUTE]  SEBS7ETEDT4
0 077705 T4E -5 02156 -5.4447 455.5114 Z2E07:  9RESL52997: SE GSO52997
350 097134 839E -3 01637 -5 0562 4204710 21 9805 1054 73323 9947332299
iC.=1i] 116553 88413 I peyje ALl 374058 M A0 145781084 54 57810658
0 1.3595:2 995E 13 0.0568 -5 9555 J22.65414 205975 1235 999651 53 G95EE51
50 1.52540:2 215E-05 .06 -4 6955 2673314 198947 1327224979 5272244792
0 174831 579E -3 00415 -3.5373 224543 190504 141643470930 51 B4347984
400 1942541 080E -3 0.02E0 -2.5480 161.5957 15.230: 1505 245907 S0.5245907
Reod z 0 ensty Complement iAlpha Beta r Kir} air}
Optimal 219651 015602 1. 19263E-10 05619 4 515585 JE2.Tar2 45 7S V28 T4T06S: 80 9065
DensityP 0 ensityPP ComplementP ComplermentPP
JE1465E-13:  1AB\ME14)  23MET4EAZ TO2EAS
AlphaP  :AlphaPP :BetaP B etal P AP AIPP Second Factor Secondd ConvexZero
056199 056199: 4513868 0561992588 D72320185: 0541921421 51 19945037 Q092521864 4 7370E0414: 4 737083
Criticalf Ab= Criti cal)

3742801778 37428778
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