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ABSTRACT 
 
We study a project scheduling problem with multi-purpose resources (PSMPR). A multi-purpose 
resource is a resource unit that is “versatile” enough to perform different types of operations. A 
mixed-integer linear programming (MILP) and a constraint programming (CP) formulation for 
the standard PSMPR model are each presented in this paper. We also propose a decomposition 
approach combining the MILP and CP techniques to take advantage of the complementary 
strengths of the two.  
 

INTRDUCTION 
 
This paper was motivated by a scheduling problem in the software development department in a 
small firm.  The department operated as a job shop with projects arriving at irregular intervals 
with varying work requirements.  The department consisted of three categories of staff: 
programmers, systems analysts, and quality control specialists.  The programmers were generally 
only able to perform that function.  Systems analysts could perform all three functions but only 
some of the quality control specialists could perform either of the other two functions.  Projects 
arrived with varying requirements for work on several tasks that required all three specialties.  At 
any point in time an array of projects was in process.  When a new project arrives the department 
supervisor needs to schedule work on the new project to provide quick response while not 
disrupting the required completion date for existing projects. We model skilled labor and flexible 
machines as multi-purpose resources in a project scheduling context and we refer to this problem 
as the project scheduling problem with multi-purpose resources (PSMPR). 
 
This paper is organized as follows. First we introduce the standard PSMPR model and present 
both the MILP and CP formulations for the PSMPR. Then a decomposition approach integrating 
the mixed integer linear programming (MILP) and constraint programming (CP) is developed for 
solving the standard PSMPR. Finally conclusions and future research directions are discussed.  
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PROJECT SCHEDULING WITH MULTI-PURPOSE RESOURCES 
 
The PSMPR belongs to the field of assignment-type resource constrained project scheduling 
problem (Drexl, Salewski and Schirmer, 1998). It is a generalization of the single-mode RCPSP, 
closely related but much richer than the multi-mode resource constrained project scheduling 
problem (MRCPSP, Talbot, 1982). And it can also be viewed as an extension of the classical 
multi-purpose machine scheduling problem (MPM, Brucker, 2001), due to the presence of 
generalized temporal constraints.  
 
Problem Description 
 
Consider a project consisting of a task set , a skill set J K and a personnel set . Each task 

has a constant processing time and no preemption is allowed. Generalized temporal 
constraints, including release dates, due dates, precedence and minimum delay constraints, etc., 

have to be satisfied due to technical requirements. There is a deadline 

S
Jj∈ jp

−

T on the makespan of the 
project. Each task  requires a set of skills, denoted by , to be present 
simultaneously for the task to progress. For each skill , task requires units of . Each 

skill  requires an individual to conduct, where is the set of persons who possess 
skill . Personnel are assumed to be unary resource, i.e., an individual can only perform one skill 
at one time point. Furthermore, personnel are multi-purpose in that for each , there is a skill 
set 

Jj∈ KK j ⊆
jKk ∈ j jkr k

Kk ∈ kSs∈ kS
k

Ss∈
sK representing the set of skills that can be performed by . Setup times are not considered 

by assuming they are included into the processing times. We find a schedule of starting times of 
all the tasks and assignments of personnel to tasks/skills while minimizing the number of persons 
needed to perform the project. 

s

    The PSMPR is a generalization of the single-mode RCPSP since each task has more than one 
way (mode) to be performed. It also generalizes the MPM into a more complex project 
scheduling environment where temporal constraints are not restricted to release dates or due 
dates. Comparing with the MRCPSP, the PSMPR exploits the versatility of the skilled labor, 
which leads to a combinatorial number of possible ways for a task to be performed.  
 
MILP Formulation 
 
In this section we present an MILP formulation of the standard PSMPR model. Let be the set 
of tasks in the project, 

J
K be the set of relevant skills required for project and the personnel set. 

The set of skills required by task is denoted by 
S

j jK . The set of persons who possess skill k is 
. Each task has a constant processing time . The minimum delay between task  and 

is 

kS j jp j
'j 'jj

δ , i.e., task cannot start until 'j 'jj
δ time units after starts. The due date for task is . 

There is a work load limit  for each individual . The deadline on the makespan of the project 

is 

j j jd

sw s
−

T . Our objective is to minimize the number of persons selected to perform the project. Define 
decisions variables as follows: 

Sszs ∈∀=  project,  theperform  toselected is s iff ,1  
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kj
jks SsKkJjx ∈∈∈∀= ,, j,in task k  skill  toassigned is s iff ,1  

Jjt j ∈∀≥  j, task of  timestarting  the,0  

Jjjjjy jj ∈∀= '' , , precedes  task iff ,1'  

   The MILP formulation of the standard PSMPR model can be written in Figure 1. Constraint (1) 
ensures an individual cannot be assigned to any task/skill unless he/she is selected. Constraint (2) 
enforces that no individual is assigned to more than one skill in the same task. Constraint (3) says 
each skill in a task requires a person who possesses that skill. Constraints (4) through (6) take 
care of the generalized temporal relations. When 'jj

δ equals , constraint (4) becomes the 

precedence constraint. Constraint (7) stipulates that the sequencing variables  and  cannot 

equal 1 simultaneously. Constraint (8) states the logic relations between sequencing variables 
and assignment variables, i.e., if two tasks are assigned with the same person then these two 
tasks cannot overlap (sequencing relation must be determined). Constraint (9) is the big-M 
formulation, a traditional way to handle disjunctive scheduling constraints. Constraint (10) says 
sequencing variables equal zero if two tasks/skills are assigned with different persons. Constraint 
(11) ensures the total work load of each person cannot exceed the work load limit of . 

jp
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s sw
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Figure 1: MILP formulation of the PSMPR 

 707



 
CP Formulation 
  
Constraint programming (CP) is the study of computational systems based on constraints.  
Although it originates in the Artificial Intelligence (AI) area back in 1960’s, there have been 
increasing interests in combining CP with the traditional OR techniques to solve difficult 
combinatorial problems in recent years (Lustig and Puget 2001). Problem reduction and search 
are the two main solving techniques in CP (Tsang 1993). Problem reduction is often referred as 
consistency maintenance in literature. It is achieved by various constraint propagation algorithms. 
An important observation on problem reduction or consistency maintenance is that, reducing a 
problem to a minimal problem where no more redundant values and compound labels can be 
removed from the domain of the problems, is NP-hard (Tsang 1993). In other words, only easy 
redundant values and compound labels are removed. This is why a search procedure is often 
needed and the efficiency of CP will be greatly affected by the procedure of a tree search.  Thus 
the success of CP usually depends on efficient constraint propagations algorithms and 
appropriate search procedures.  
 
A conceptual discussion on the potential advantage of CP for solving a project scheduling 
problem has been treated in Dula et al. (2004). From modeling perspective, the expressive nature 
of CP often makes the model compact and easy to read; from algorithm perspective, many 
efficient constraint propagation algorithms are available for solving scheduling problems 
(Baptiste, Le Pape and Nuijten, 2001). Here we present a CP formulation for the standard 
PSMPR model using OPL (Van Hentenryck, 1999), a programming language that supports both 
mathematical programming and constraint programming. We explain the main CP constructs 
before presenting the CP formulation.  
 
Variable Definition. Binary choice variables and assignment variables are defined in the same 
way as in the MILP model. For the scheduling part, however, we do not need those sequencing 
variables any more. CP provides us with a compact and elegant way to define variables and 
express scheduling constraints.  We define activity at skill level, i.e., treat each skill required in a 
task, instead the task itself, as an activity: 

Activity activity [j in Tasks, k in Skills] (duration[j]); 
It defines a two-dimensional array of Activity for each skill k required in each task j. Notice that 
the set of skills within task j have the same duration of task j. An activity in OPL has attributes 
such as start, duration, etc., that can be retrieved for expressing temporal constraints. 
 
Temporal Constraints. They can be stated in a general way: 

a1.start – a2.start >= δ; 
It says activity a1 cannot start until δ time units after activity a2 starts. It is clear that when δ 
equals the processing time of a2, the above constraint becomes precedence constraint. An 
alternative way to represent precedence constraint is: 

a2 precedes a1; 
The due date constraint can be stated as: 

a.start + a. duration <= d; 
where d is a constant due date for activity a. 
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Resource Constraints. Since each sailor can only perform one skill at a time, he/she can be 
modeled as unary resource as follows: 

UnaryResource skilledLabor[Personnel]; 
It declares an array of unary resource called “skilledLabor” over the whole set of available 
people called “Personnel”.  
 
Since a skill can be assigned to any individual who can perform that skill, the idea of alternative 
resource in OPL (Van Hentrenryck 1999) can be applied: 

AlternativeResources alterRes (skilledLabor); 
It declares a pool of alternative resources called “alterRes” over the set of “skilledLabor” 
declared earlier. 
 
The resource requirement constraint is stated as: 

a requires alterRes; 
 It says activity a requires one person from the resource pool called “alterRes”. 
 
Another important consideration is to prevent assigning sailors to skills they cannot perform. 
Suppose sailor cannot perform activity , such a constraint can be enforced by: s a

not activityHasSelectedResource ( , alterRes, ); a s
It prevents sailor s to be chosen from the alternative resource pool to perform activity a . 
activityHasSelectedResource ( a , alterRes, ) is a Boolean function that returns true if sailor s is 
assigned to activity a . By adding a not in front of it, we prevent this event from happening any 
time during the solving process.  

s

 
Linking Constraints. We also need to link the assignment variables to the CP constructs: 

activityHasSelectedResource ( , alterRes, ) <=> assign [a, s] = 1; a s
 
Now the CP formulation for our standard PSMPR model can be stated in Figure 2. 

(21)             1  s] assign[a,  s) alterRes, (a,Re      
(20)                                   s) alterRes, a,(Re       
(19)                                                 A         a           alterRes;  a      
(18)                                                                                    ndmakespan.e      

(17)                                                 A         a                a.start        
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(12)                                          ,,             0    ..
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Figure 2: CP formulation of the PSMPR 
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The role of the binary variables in the CP model is only to count the number of selected 
personnel in order to express the objective function.  
 

A COMBINED MILP/CP DECOMPOSITION 
 
The single-mode RCPSP has been proved to be NP-hard (Blazewicz, Lenstra and Rinnooy Kan, 
1983), which means currently no polynomial algorithms exist to solve it to optimality (Garey and 
Johnson, 1979). Since the PSMPR includes the single-mode RCPSP as a special case, exact 
methods such as the MILP and CP often fail to get quality solutions for it with reasonable 
computational time. In this section we develop a combined MILP/CP decomposition approach to 
solve this challenging combinatorial problem.  
 
Decomposition Framework 
 
We propose a service level based decomposition (SLBD) framework to facilitate the above 
cooperation scheme. Two layers of resources are present in the standard PSMPR model. The first 
layer is the service level, which is the set of skills (service) provided by the skilled labor. The 
second layer is the actual personnel or skilled labor. Each task interacts only with the service 
level directly, i.e., we know which and how many skills a task requires, but we do not know 
which person among the second layer resource performs each skill. Figure 3 illustrates the SLBD 
framework. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

J1 J2 J3 J4 34δ  23δ  12δ  

K1 K2 K3 

S1 

First Layer: 
Service Level 

Second Layer: 
Personnel 

S5 S4 S3 S2 

 
Figure 3: The SLBD framework 

 
The rectangles represent tasks with ijδ being the minimum delay between task i and . The 
requirement of first layer resources (service level) is given by the task-skill relations. For 
instance, task J2 requires 1 unit of skill K1 and K3. The dotted arrow shows the skill-mix of the 
personnel, with the actual assignments unknown. For example, S3 is the most versatile individual 
as he/she is able to perform all the three skills, but which task(s)/skill(s) is S3 actually assigned 
to is what we need to find out. The PSMPR can be decomposed into two sub-models: a single-

j
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mode RCPSP with “cumulative” first-layer-resource (service level) and a generalized assignment 
problem (GAP).  
 
The RCPSP CP Model. The single-mode RCPSP CP sub-model is shown in Figure 4. 
 

(26)                ,        k           resource   (1)     a          

(25)                                                                  a.start           
(24)                         ),(          b.start     a.start           
(23)                                       ),(                  b        a          
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Figure 4: The scheduling sub-model 

 
There are two crucial points that have to be stressed. First, unlike the case in the pure CP model 
presented earlier, activities are defined at task level instead of skill level. Second, we treat the 
first-layer “service level” as the “cumulative” resource in the scheduling sub model, whereas in 
the pure CP formulation the second-layer personnel are directly treated as “unary” resources. In 
this way, there is only one mode to perform each activity, which gives us a single-mode RCPSP, 
much easier to solve than the original PSMPR.  
 
The GAP ILP Model. Figure 5 shows the GAP integer linear programming (ILP) sub-model. 
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Figure 5: The assignment sub-model 

 
OL is the set of overlapping tasks, obtained by solving the RCPSP sub-model. Constraint (31) 
prevents all pairs of overlapping tasks/skills from being assigned with the same person. It 
establishes the link between the RCPSP and GAP sub-models.  
 

CONCLUSIONS AND FUTURE RESEARCH 
 
In this paper, we have studied an assignment-type resource constrained project scheduling 
problem called PSMPR to model the “versatility” of skilled labor and multi-purpose machines in 
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a project scheduling context. In order to solve the standard PSMPR model efficiently, we 
developed a service level based decomposition (SLBD) approach combining the complementary 
strengths of both MILP and CP techniques.   
 
Two directions of research could be possible in the future. From the modeling perspective, 
extensions of the standard PSMPR model, e.g., objective being minimizing the assignment cost, 
proficiency related processing time, etc. could be studied. From the algorithmic perspective, 
more sophisticated hybrid decomposition approaches (Jain and Grossmann, 2001) could be 
developed for solving the PSMPR.   
 

NOTES 
 
1. Supported by Office of Naval Research (ONR) grant # N00140310621. 
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