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ABSTRACT

In this research, we consider the problem of optimally assigning packages to shipment meth-
ods that is usually encountered by online retailers. In fulfillment centers, customer orders
are assembled into physical packages that are ready to be shipped after picking, packing and
inspection operations. Each package has its size and promised delivery date as attributes,
and each shipment method has the carrier name, cutoff time, expected delivery time, capac-
ity and service type (next day, second day, etc.) as attributes. The problem is then assigning
the packages to shipment methods so that the promised delivery dates for packages will be
satisfied, capacities of shipment methods will not be exceeded, and total shipment costs
will be minimized. A special case of this assignment problem is the generalized assignment
problem (GAP), which is known to be NP-hard. We propose a Lagrangian relaxation based
solution method for the problem. We also propose intuitive, easily implementable decision
rules that can provide good heuristic solutions.

Keywords: assignment problem, generalized assignment, Lagrangian relaxation, branch-and-
bound, package assignment.

INTRODUCTION

Online retailers operate large warehouses or distribution centers that are used to receive the
goods from suppliers, store them until they are shipped to customers and fulfill customer
orders by picking the individual items, assembling them into packages and shipping the pack-
ages. These facilities are sometimes called fulfillment centers. A typical customer puts an
order for a number of items online and given a promised delivery date, usually based on the
shipping option selected by the customer. These orders are then placed in a queue; and for
each order, the items are picked from their locations in the warehouse by order pickers and
put on a conveyor belt. Then, items on the conveyor belt are assembled into packages by
order assemblers. After visual inspection, packages are weighed and compared against their
computer-generated expected weight to make sure that they contain correct items and there
are no missing or extra parts or items. If they pass all checks and inspections, the packages
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are closed and they become ready for the assignment of shipment methods. A shipment
method is a record with the following attributes: name of the package carrier, the type of
service (next day, second day, etc.), the cutoff time for loading onto the vehicle, capacity of
the vehicle and expected delivery time. Each carrier may have multiple vehicles leaving the
fulfillment center on a given day, each having a different cutoff time. Packages with different
service types may be shuttled to the carrier’s consolidation center by the same vehicle, but
they are still considered different shipment methods since their expected delivery times are
different. The rates (per weight or per volume) differ among carriers and depending on the
type of service.

The problem is to assign a shipment method to each package so that each package’s promised
delivery date will be met, capacity of shipment methods will not be violated and the total
shipping costs will be minimized. Even though the customer selects a particular service level
when placing the order, there is still opportunity for the retailer to optimize shipping costs
by appropriately choosing from eligible shipment methods. Besides, retailers sometimes offer
free shipping as an incentive, in which case there is no service level selected by the customer
and the retailer has to optimize the shipping costs.

A special case of this assignment problem is the classical generalized assignment problem
(GAP). Packages in this assignment problem become tasks, and shipment methods become
agents of the GAP. The GAP is known to be NP-hard, and there are many optimizing or
heuristic approaches to solve it. Nauss (2003), for example, proposes a specialized branch-
and-bound algorithm for the GAP. There are also variants of the GAP, such as multilevel
generalized assignment problem, which is also NP-hard. Laguna et al. (1995) proposes a
tabu search algorithm for the multilevel generalized assignment problem, whereas Osorio
& Laguna (2003) propose logic cuts within the context of the classical branch-and-bound
algorithm. Yano & Newman (2001) consider assignment of containers to trains dynamically
between a depot and a destination, but their model is deterministic and does not allow
heterogenous containers and trains. Powell (1996) considers a stochastic assignment problem
in which trucks are assigned to loads, but it also has a spatial dimension, i.e. the agents
(the trucks) are moving over a network, and repositioned full or empty to take advantage of
potential future demand.

PROBLEM FORMULATION

The package assignment problem that we study in this research is essentially the classical
assignment problem with added side constraints. The classical assignment problem is a spe-
cial case of the minimum cost network flow problem which can be solved efficiently as an LP.
Because its constraint matrix is totally unimodular, it results in an integer optimal solution
when the LP is solved. However, when there are side constraints, the problem loses its total
unimodularity, so it has to be solved as an integer program.

Let the set of packages to be assigned be P , and the set of shipment methods, S. We denote
the cost of assigning package i ∈ P to shipment method j ∈ S, cij. We also denote whether or
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not package i is assigned to shipment method j, as the binary variable xij . All packages must
be assigned to exactly one shipment method. This translates into the following assignment
constraint:

S∑

j=1

xij = 1 ∀i ∈ P. (1)

We denote the size (in lbs.) of package i ∈ P as si, and the capacity (in lbs.) of shipment
method j ∈ S, rj . Total amount of packages assigned to a shipment method is constrained
by its capacity, which results in the following constraint:

∑

i∈P

sixij ≤ rj ∀j ∈ S. (2)

We denote the promised delivery time of package i ∈ P as tpi , and the expected delivery time
of shipment method j ∈ S, tdj . The package has to be shipped by its promised delivery time,
so the following constraint has to be added to the model:

tdjxij ≤ t
p
ixij ∀i ∈ P and ∀j ∈ S. (3)

The time at which package i ∈ P becomes available for shipment is denoted by tai , and the
cutoff time for shipment method j ∈ S to be assigned to a package is denoted by tcj , Then,
the following inequality must hold:

tai xij ≤ tcjxij ∀i ∈ P and ∀j ∈ S. (4)

The problem can then be formulated as a binary integer linear programming model as follows:

[P1] min z =
∑

i∈P

∑

j∈S

cijxij (5)

s.t. ∑

j∈S

xij = 1 ∀i ∈ P (6)

∑

i∈P

sixij ≤ rj ∀j ∈ S (7)

tdjxij ≤ t
p
ixij ∀i ∈ P and j ∈ S (8)

tai xij ≤ tcjxij ∀i ∈ P and j ∈ S (9)

xij = 0 or 1, ∀i ∈ P and j ∈ S. (10)

If tai = 0 and t
p
i ≥ maxj∈St

d
j ∀i ∈ P , which means all packages are available at the beginning

of the planning horizon and the promised delivery times of all packages are later than the
latest expected delivery time among all shipment methods, Eqs. 8 and 9 become redundant
and can be dropped from the model. Then, the package assignment problem reduces to the
classical GAP. Since the classical GAP is a special case of the package assignment problem
and it is NP-hard, the package assignment problem is also an NP-hard problem.
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LAGRANGIAN RELAXATION

If we relax Equation 7, the resulting problem is a many-to-one assignment problem in which
each package is assignable to a subset of the shipment methods, where the subsets are defined
by Equations 8 and 9. We define the Lagrange multipliers λj for j ∈ S corresponding to
Equation 7. Let X be the set of x that satisfy Equations 6-10. We then relax Equation 7
and bring it into the objective function, resulting in the following Lagrangian subproblem
or Lagrangian function:

L(λ) = min
λ≥0

{
∑

i∈P

∑

j∈S

cijxij +
∑

j∈S

λj(
∑

i∈P

sixij − rj) : x ∈ X}.

This can be re-written as:

[P2] L(λ) = min
λ≥0

{
∑

i∈P

∑

j∈S

(cij + λjsi)xij −
∑

j∈S

λjrj : x ∈ X} (11)

Let δj =
∑

i∈P sixij − rj for j ∈ S. Then, Equation 7 can be re-written in the form δ ≤ 0.

Lemma 1. For any λ ≥ 0, the value L(λ) of the Lagrangian function is a lower bound on
the optimal objective function value z∗ of problem P1.

Proof: Let x∗ be an optimal solution to problem P1 and x̂ be an optimal solution to problem
P2. Then,

z∗ = cx∗ ≥ cx∗ + λ(sx∗ − r) ≥ cx̂+ λ(sx̂− r) (12)

The first part of this inequality is because x∗ is a feasible solution to problem P1, and the
second part is because x̂ is an optimal solution to problem P2.

Solving the Relaxed Assignment Problem

The relaxed problem is a simple assignment problem in which each package has to be assigned
to a shipment method. For each package i ∈ P , there is a set Si ⊂ S which includes the
shipment methods assignable to package i. Si is the set of shipment methods that satisfy
the constraints 8 and 9. In other words, Si = {j ∈ S | tdj ≤ t

p
i and tai ≤ tcj}.

Lemma 2. Let x∗ be an optimal solution to the relaxed assignment problem. Then, for all
i ∈ P , x∗

ij = 1 for j = argmink∈Si
{cij} and x∗

ij = 0 for any other j ∈ Si.

Proof: Assume that x∗ is not optimal. Then, for some i ∈ P , there exists a shipment method
k ∈ Si for which cik < cij . But this contradicts the fact that cij is the minimum cost ship-
ment method in Si.

We therefore obtain the optimal solution to the relaxed problem by simply assigning each
package to its lowest cost shipment method.
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Solving the Lagrangian Subproblem

We obtain an immediate lower bound for problem P1 when we solve the relaxed assignment
problem for any value of λ. But in order to obtain the tightest bounds, we need to maximize
the Lagrangian function, which is also called the Lagrangian subproblem or Lagrangian dual:

L∗ = max
λ≥0

L(λ). (13)

In order to solve the Lagrangian dual, we use a subgradient optimization procedure. We
use an adaptation of the Newton’s method in which we update the Lagrange multipliers in
a relatively large step towards the optimal solution along the subgradient direction. The
initial value of the multipliers are set to zero, and at every iteration, they are updated as
follows:

λt+1

j = max{0, λt
j + θtδj} ∀j ∈ S (14)

where θt is the step size at iteration t. In order to make sure that the procedure will converge,
the step size is chosen as follows (see, for instance, Ahuja et al. (1993)):

θt =
σt[UB − L(λt)]

||δ||2
(15)

where ||δ|| = (
∑

i δ
2
i )

0.5 is the Euclidean norm of δ and σk is a scalar that is chosen strictly
between 0 and 2. The initial value of σ is 2, and it is halved once the Lagrangian objective
function fails to increase after a long series of iterations. UB is the surrogate for the optimal
Lagrangian objective function value, L∗ and it is chosen as the best upper bound, i.e. the
minimum objective function value of the feasible solutions found thus far in the algorithm.

Note that during the branch and bound algorithm, the iterations of the subgradient method
may be stopped whenever L(λ) ≥ UB as that means we cannot obtain a better feasible
solution than the best existing solution from this branch and bound node. We describe the
branch and bound algorithm in the next section.

THE BRANCH AND BOUND ALGORITHM

At the beginning of the branch and bound algorithm, we solve problem P2 with λ = 0. If the
resulting solution is feasible, than it is an optimal solution to problem P1 as well. If it is not
feasible, we execute the subgradient procedure to solve the Lagrangian dual. If the resulting
solution is feasible, we might have obtained the optimal solution. In order to determine if
that is the case, we check the optimality conditions as follows.

Lemma 3 (Optimality Conditions). An optimal solution (x∗, λ∗) to the Lagrangian sub-
problem L(λ) (problem P2) is also an optimal solution to the package assignment problem
(problem P1) if and only if:

(i) sx∗ ≤ r

(ii) λ∗(sx∗ − r) = 0 (Complementary slackness)

Proof: Condition (i) implies that x∗ is a feasible solution. Since L(λ) is a lower bound for
the optimal cost of problem P1, we have: cx∗ ≥ L(λ∗) = cx∗ + λ(sx∗− r). By condition (ii),
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we have cx∗ = L(λ∗).

If the solution is feasible after the subgradient procedure, we keep it as a candidate for op-
timal solution and set its total cost as the upper bound (UB). We apply branching to the
solution of the relaxed problem before the subgradient procedure (which was not feasible).
If the solution is infeasible, we apply branching to this solution.

We branch as follows. We pick shipment method n ∈ S with the highest capacity violation.
We then find package p ∈ P that is assigned to n with the highest weight. We create two
branches: (1) we set xpn = 1; (2) we set xpn = 0. Clearly, these two branches are mutually
exclusive and divide the search region in two.

We then select an unexamined branch and bound node and repeat the same procedure until
all of the created branches are fathomed, at which time we will have found the optimal
solution to problem P1. If a branch has a lower bound greater than the best UB, that
branch is fathomed because it cannot yield a better solution. If a branch yields a feasible
solution and satisfies Lemma 3, then that branch is fathomed as well, as we can’t find a
better solution by further branching from that node. We update the best UB if this feasible
solution has a lower total cost.

DECISION RULES

The Lagrangian relaxation based branch and bound method that we propose in this paper
is expected to be computationally efficient. Lagrangian subproblems do not require any
algorithm to solve them, since the optimal solutions are determined in a straightforward
manner, as we describe in Section . However, it is also beneficial to have some intuitive and
easily implementable decision rules. It will be interesting to compare the performance of the
branch and bound algorithm with that of the decision rules. The following are the decision
rules that we propose in this paper.

Greedy: This is the simplest of the decision rules. We simply assign each package as it
becomes available to the cheapest shipping method available that has enough capacity and
satisfies the promised delivery date of the package.

Look ahead: We determine a possible sequence of orders after adding processing time to
each order that depend on the number and type of items in each package. We pick the first
n packages in the list, add the packages that are already available to be shipped and sort
them according to some priority rule (e.g., we can sort by size), and greedily assign them to
shipment methods as in greedy assignment. While assigning the packages, we don’t make
the actual assignment for the packages that aren’t ready yet, but we reduce the capacities
of the shipment methods as if the assignment actually happened. This reserves the capacity
for the possible future arrivals. In the next round of assignments, we repeat the procedure
but we use the actual capacities.
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Buffer: We wait until n packages are ready to be shipped. We then assign any package
immediately if the cutoff time is near for the latest feasible shipment method for the package.
Then we sort the packages by some priority rule (again, we can use size here) and then we
greedily assign them to the cheapest available shipment method that does not violate the
promised delivery date.

CONCLUSION

In this research we propose a Lagrangian relaxation based branch and bound algorithm to
solve the package assignment problem that is encountered by major online retailers. We
use Lagrangian relaxation to obtain a tight lower bound at each branch and bound node.
Lagrangian relaxation lower bounds are usually tighter than the lower bounds generated by
simply relaxing the integrality constraints. In this problem, Lagrangian relaxation creates
a trivial problem which has an immediate solution, so we expect a fast solution procedure
overall. We describe the details of the algorithm in this paper. We also describe a few
intuitive decision rules that can be used to heuristically solve the problem in a dynamic
setting. We will test the computational efficiency of the exact branch and bound method
as well as the solution quality of the heuristic decision rules in future research. We will also
compare our algorithm with general integer programming solvers such as CPLEX.
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Laguna, M., Kelly, J. P., González-Velarde, J. L., & Glover, F. (1995). Tabu search for the
multilevel generalized assignment problem. European Journal of Operational Research,
82(1), 176–189.

Nauss, R. M. (2003). Solving the generalized assignment problem: An optimizing and
heuristic approach. INFORMS Journal on Computing, 15(3), 249–266.

Osorio, M. A. & Laguna, M. (2003). Logic cuts for multilevel generalized assignment prob-
lems. European Journal of Operational Research, 151(1), 238–246.

Powell, W. B. (1996). A stochastic formulation of the dynamic assignment problem with an
application to truckload motor carriers. Transportation Science, 30(3), 195–219.

Yano, C. A. & Newman, A. M. (2001). Scheduling trains and containers with due dates and
dynamic arrivals. Transportation Science, 35(2), 181–191.

- 747 -


