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ABSTRACT 

The majority of research related to intermittent demand has used a geometric distribution for the 

interval between demands.  Many articles investigate the effect of the distribution of the demand 

when it occurs on estimates of the population demand per period. However, a gap in the 

literature occurs in examining the effect of the distribution for the interval between demands. 

This research will investigate how popular forecasting techniques for intermittent demand 

perform when certain discrete Beta-Binomial distributions model the distribution of the interval 

between demands instead of the geometric distribution. Single Exponential Smoothing, 

Croston’s method, and the Syntetos Boylan Approximation (SBA) Bias Corrected Croston 

Method are investigated with various demand distributions.  

INTRODUCTION 

Croston (1972) provided an elegant solution to forecasting intermittent demand by forming two 

series for the demand size and the time between demands.   Since the early work related to 

intermittent demand, particular attention has been paid to the interval between demands, the size 

of the demands and the relationship between size and interval (Willemain et al. 1994).  Demand 

classification schemes published in the literature provide guidance on when to use a particular 

forecasting method.   

The slow-moving demand forecasting literature identifies the necessity for classifying demand 

occurrences to offer direction in selecting the right forecasting methodology and stock control 

methods (Syntetos, Boylan, and Croston, 2005; Boylan, Syntetos and Karakostas, 2006).  By 

correctly classifying demand, the forecaster can select the best technique for the given situation 

(Syntetos, et al 2005).  When picking the appropriate method, Williams (1984) used the 

coefficient of variation to classify “lumpiness” in relation to the lead-time as an indicator of 

“intermittence.” This method had shortcomings identified in the research by Syntetos, et al 

(2005) mainly in that it did not always distinguish demand patterns sufficiently.  

Croston (1972) made a few basic assumptions about slow-moving data series.  He assumed 

demand would occur as a Bernoulli process, resulting in independent and identically distributed 

(IID) demand resulting in a geometric distribution.  Demand size was assumed to follow a 

normal distribution and be IID. A considerable amount of research has studied violations to the 

demand size assumption and has investigated different distributions for demand size.  The 

majority of the research in this area, however, does not investigate Crostron’s assumption of a 
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geometric distribution for the interval between demands.  Croston(1972, Segerstedt (1994), 

Willemain et al, 1994, Bagchi, Havya and Ord (1983) and leven and Segerstedt (2004) 

demonstrate the Geometric distribution is assumed to be the underlying distribution for time 

between positive levels of demand. Numerous articles have investigated the demand size and 

related distributions.  Inventory management articles have investigated distributions related to 

demand lead time.  Little investigation has occurred related to the time between demands.   

When the demand is transitioning the assumption of a geometric distribution for the intervals 

between demands is questionable.  For example a textbook that has been in print for many years 

without an update would have a high level of demand for the first few years it is out.  As the used 

book market increases, the demand for the new book will decrease and eventually become a slow 

mover.  As it shifts from regular demand to slow demand the average time between demands is 

obviously changing.  This research will investigate different demand distributions for the time 

between demands as illustrated in Figure 1.   The shaded area shows the area that is of interest to 

this research.  Little research has been done with respect to the distribution of the demand rate 

Figure 1. Transitional stages for demand.  

 

Croston’s Method 

 

In Croston’s (1972) method the smoothing constant  like SES it assumes a constant demand 

average of size  every p periods, so the mean demand is not /p, but  
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Additional estimates using SES are made for the average demand and the time between demands 

with updates if a demand occurs. Willemain et al. 1994 should be consulted for the methodology. 

The variance becomes  
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Optimal results using Croston’s (1972) are achieved with alpha values between 0.1 and 0.2.     
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Bias Correction 

 

Syntetos and Boylan have provided the formulas to compute the bias correction with the true 

variance from the Beta Binomial distribution. A useful formula in constructing this bias 

correction is the following, which is based on a Taylor expansion of a ratio.  
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If the time between demand interval series is not auto-correlated and the intervals (pt) are 

geometrically distributed with a mean of p and homogeneous variance of p(p-1) then: 

Var(x2) = Var ( tp ) = )(
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Assuming the demand sizes are distributed with a mean m then equation 7 can be transformed to: 
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Then it follows that: 
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Beta Binomial 

 

The Beta-Binomial Distribution is a family of discrete distributions that arises from probability 

theory and statistics (Griffiths, 1973). It is a finite set of non-negative integers that occurs when 

the probability of success from a set number of random or unknown Bernoulli trials.  This 

discrete distribution is the binomial distribution when the probability of success at each trial is 

not fixed but random and follows the beta distribution. It is generally applied to capture over 

dispersion in binomial types of distributed data. The Beta-Binomial probability mass function is 

the following function with parameters  and . 
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The Beta-Binomial Cumulative Distribution Function is:  
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The mean of the Beta-Binomial Function is: 
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The variance of the Beta-Binomial Function is: 
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Table 1 illustrates how the probability mass function (PMF) is calculated for the Beta Binomial 

distribution.  This distribution was selected, as its shape is flexible. Its shape can actually 

mimic the normal distribution as well as skewed distributions.  
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Table 1.  The computation of the probability for a Beta-Binomial distribution 

n= 9, alpha = 0.028, beta = 0.035 

Actual 

Time 

till 

Deman

d (t) 

Periods 

with no  

Deman

d 

Comb(

n,x) 

(A) 

Beta(alpha

,Beta) 

(B) 

Gamma 

(n+alpha+Bet

a) 

(C) 

Gamma (t-

1 +alpha) 

(D) 

Gamma     

(n-t-

1+Beta) 

(E) 

Beta-   

BinPMF 

(A*D*E

)/(C*B) 

1 0 1 64.19 46,152.02 35.16 43460 0.516 

2 1 9 64.19 46,152.02 0.985 5,408.8 0.016 

3 2 36 64.19 46,152.02 1.012 768.85 0.009 

4 3 84 64.19 46,152.02 2.053 127.4 0.007 

5 4 126 64.19 46,152.02 6.215 25.30 0.007 

6 5 126 64.19 46,152.02 25.04 6.27 0.007 

7 6 84 64.19 46,152.02 125.9 2.07 0.007 

8 7 36 64.19 46,152.02 758.8 1.02 0.009 

9 8 9 64.19 46,152.02 5333 0.981 0.016 

10 9 1 64.19 46,152.02 42813 28.03 0.405 

 

METHODOLOGY 

Simulations were conducted for 600 periods for 5 distributions shown in Table 2, available upon 

request. Four are discrete Beta-Binomial distributions and the fifth is the geometric distribution.  

Forecasts were computed with five forecasting methodologies.  The first Beta-Binomial 

distribution has a high probability of demand in the first and last period and very low probability 

of demand in periods 2 to 9.  For the second distribution, the probability of demand is similar in 

each period and is generally near a 1 in 10 chance of demand occurring.  The third set contains 

probabilities that generally increase from very low to about a 1 in 4 chance of demand and then 

decrease again.  The fourth set is similar to the third but the probabilities increase from 0.018 to a 

max of  0.182 over 10 periods.  For the geometric, the probability of demand slowly decreases.   

Simulations were conducted using SES, Croston’s (1972) method, the bias corrected SBA 

Croston Method, SBA Croston with a known probability and Croston with a known variance. 

The Root Mean Square Error (RMSE) was computed for Croston’s method, the bias corrected 

Croston’s method, SES, the bias corrected SBA Croston known probability and the SBA Bias 

corrected Croston with the Beta Binomial distribution.  The research is conducted at two alpha 

levels.  The first being a smoothing constant equal to 0.1 and the second when alpha is 0.3. 
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RESULTS 

This research investigates a non-geometric distribution for the interval between demands for 

intermittent demand.  Simulations are conducted using four discrete Beta Binomial distributions.  

The average root mean square error is provided in Table 3 (available upon request).  The lowest 

error is in bold.. As might be expected, all techniques developed for intermittent demand yielded 

lower average errors than forecasts using SES. Generally the lower alpha levels provided the 

lowest error. The error in the forecast varied more from distribution to distribution than from 

technique to technique, with the exception of SES. That is all forecasting methodologies using 

the fourth Beta-Binomial Distribution had less error than any of the other distributions.   

CONCLUSIONS 

This research provides an initial look at assuming a non-geometric distribution for the interval 

between demands for intermittent demand.  A limited exploration is conducted using four 

discrete Beta Binomial distributions applied to variations of Croston’s method and using the 

Geometric distribution as a benchmark. An important conclusion is that the SBA Bias correction 

is designed for the Geometric distributional assumption. A bias correction using the true variance 

of the distribution for the time between demands often provides slightly better RMSEs. Croston’s 

procedure with no bias correction may actually outperform the bias corrected procedure under 

the presence of a non-geometric distribution for the length of the time interval between demands.   
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