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ABSTRACT

This work presents a decision support framework for solving design problems in multi-server
finite-buffer queuing systems with random arrivals. The key to the proposed approach is a col-
lection of new, accurate two-moment approximations for the queue lengths, drop probabilities,
and average customer residence times in the M/G/c/k queue. These approximations are shown
to be accurate for systems of practical interest, including queues with many servers, high utiliza-
tions, and high service time variability. The complete decision support framework combines these
approximations with a mathematical programming formulation of the M/G/c/k design problem.

INTRODUCTION

Queueing systems with multiple servers and finite-capacity buffers occur in a wide variety of appli-
cations, including manufacturing, telecommunications, transportation, and service organizations.
This paper presents a decision support framework for solving design problems in multi-server
finite-buffer queuing systems with random arrivals. The key to the proposed approach is a collec-
tion of new, accurate two-moment approximations for the queue lengths, drop probabilities, and
average customer residence times in the M/G/c/k queue. Through comparisons to simulation, these
approximations are shown to be accurate for a range of systems of practical interest.

Previous work has investigated approximations for multi-server queueing systems—for example,
(Kimura, 1994; Kingman, 1962; Nozaki and Ross, 1978; Sakasegawa, 1977; Tijms, 1992)—and a
range of problem formulations and solution approaches for finding good configurations in different
contexts; (Smith, 2007) provides a survey of several relevant articles. This work proposes a set
of new, robust approximations, building on previous research into queue length approximations
(Myers and Vernon, 2012), and shows how these techniques may be combined with a general
mathematical programming framework to provide decision support for system designers.

The rest of this article makes the following contributions. First, a formulation of a general de-
sign problem for the M/G/c/k queue as a nonlinear integer mathematical programming problem.
Second, presentation of new two-parameter approximation for the queue length distributions in
M/G/c queueing systems. Third, drawing on a result of Tijms (Tijms, 1992), an extension of the
M/G/c queue length approximation to derive and validate formulas for the drop probability and av-
erage residence times in the M/G/c/k queueing system. Finally, presentation of an example design
problem, including a search-based solution strategy.

A DESIGN FRAMEWORK FOR M/G/c/k QUEUEING SYSTEMS

Consider an M/G/c/k queue having c servers and a general service time distribution with mean
x and standard deviation σ . The service distribution’s coefficient of variation is vx = σ/x. The
system has total capacity k, including the c servers. Arriving customers that find the system full



(with a total of k already waiting and in service) are dropped and must exit immediately without
receiving service. The queue receives a random (Poisson) arrival stream at a rate λ . The server
utilization (the fraction of time the server is busy) is ρ = λ x.

Consider the problem of parameterizing the queue by determining the number of servers c and
the total number of allocated buffer spaces b = k − c. Three goals are readily apparent: first,
minimizing the total cost of provisioning the queue’s servers and buffer space; second, achieving
a target throughput rate of served customers, which implies a bound on the fraction of dropped
customers; and third, maintaining an acceptable bound on customers’ expected residence times.

Let the cost of each server be α and the cost of each allocated buffer space be β . A straightforward
linear cost function for provisioning the system with c servers and total capacity k is

z = αc+β (k− c) (1)

Suppose f drop(c,k) yields the proportion of dropped customers when the queue has c servers and
total capacity k. If the arrival rate is λ , then the rate at which non-dropped customers receive
service and exit the system is

Λ = (1− f drop(c,k))λ (2)

Let R(c,k) represent the expected total residence time experienced by a customer who enters the
queue without being dropped, inclusive of both waiting and service times.

Combining these design goals yields a nonlinear integer mathematical programming problem:

min
c, k

αc+β (k− c) (3)

subject to:

(1− f drop(c,k))λ ≥ Λmin

R(c,k)≤ Rmax

c, k positive integers

The objective minimizes the total cost of parameterizing the queue. The first constraint ensures
that the system’s throughput is at least Λmin and the second ensures that the expected customer
residence time is no more than Rmax. Many variations can be incorporated into this basic model.
The rest of this paper assumes the basic model of (3), but the solution strategies we discuss can be
adapted to work with additional constraints or a modified objective function.

The major practical consideration in solving (3) is obtaining accurate estimates of the drop proba-
bilities f drop(c,k) and the expected residence times R(c,k). This may be done by simulation, but
that requires a potentially time-consuming step embedded within every iteration of the solution al-
gorithm. Therefore, there is an advantage in developing analytic formulas for the drop probabilities
and residence times that can be incorporated into numerical solution algorithms.

TWO-MOMENT APPROXIMATIONS



M/G/1 Queue Length

Lret πn denote the probability that the queue contains n customers. Myers and Vernon established
that the following approximation is accurate for a wide range of M/G/1 systems having one server
and theoretically infinite capacity (Myers and Vernon, 2012):

πn ≈ ρ q j−1 (1−q) n ≥ 1 (4)

where

q =
λ r

1+λ r−ρ
=

ρ(v2
x +1)

2+ρ(v2
x −1)

(5)

and r is the expected residual life of a customer in service,

r =
x
2
(1+ v2

x) (6)

This formula is exact for M/M/1 systems: setting vx = 1 gives q= ρ and (4) reduces to the standard
M/M/1 length distribution:

πn = ρ
n(1−ρ) (7)

M/G/c Queue Length

It can be shown that the values of πn for n > c−1 in the M/M/c system are given by

πn =

(
1−

c−2

∑
i=0

πi

)
ρ

n−(c−1) (1−ρ) (8)

where ρ is the individual server utilization given by ρ = λ/(c µ). The equation resembles the
standard length distribution for M/M/1; the first term is the probability that at least c− 2 servers
are occupied. This observation, which is exact for M/M/c, suggests an approach for approximating
length probabilities in M/G/c: assume that the tail of the M/G/c length distribution obeys the
modified geometric scaling of (4) and substitute the scaling term q from (5) for ρ .

πn ≈

(
1−

c−2

∑
i=0

πi

)
ρ qn−(c−2) (1−q) (9)

This approximation is valid for the tail probabilities, n > c− 1. In the case where there are c− 1
customers (corresponding to 1 empty server), equation (8) gives

πc−1 ≈

(
1−

c−2

∑
i=0

πi

)
(1−ρ) (10)

These equations require estimates of π0 to πc−2, which correspond to the number of occupied
servers and do not involve any waiting customers. Therefore, it is reasonable to believe that the
queue length probabilities for these states are primarily a function of the individual server uti-



lizations, even in cases where the service times are not exponentially distributed. Equation (4) is
exact for systems with exponentially distributed service times, so it is reasonable to choose values
that make equation (9) exact for M/M/c systems. The relevant M/M/c queue length distribution is
(Harchol-Balter, 2013):

πn = π0
(cρ)n

n!
(11)

when k ≤ c. The probability of finding the system empty is

π0 =

[
c−1

∑
j=0

(cρ) j

j!
+

(
(cρ)c

c!

)(
1

1−ρ

)]−1

(12)

To estimate the M/G/c length probabilities, first estimate the probabilities for n ≤ c − 2 using
(11) and (12), then calculate approximate probabilities for n ≥ c− 1 using (9) and (10). Finally,
normalize the estimates to ensure the approximate distribution sums to 1.

Figure 1 compares the performance of the M/G/c length approximation against the results of sim-
ulation. Each figure plots the estimated 90th and 99th percentiles of the queue length distribution
for increasing numbers of servers in systems with high variability hyperexponential service times
(v2

x = 20) and utilizations of 75% and 95%, representing systems with moderate and heavy load.
For clarity, the simulated reference queue lengths are plotted without error bars. Each simulation
collected a sufficient number of observations to yield an error of 1% or less in its estimate.

The plots show that the M/G/c length approximation accurately approximates the both the 90th and
99th percentiles of queue length. The highest errors occur at the 70% utilization levels, where the
approximation overestimates the 99th percentile of queue length by as much as 8 positions—this
is still less than a 15% error, which is accurate enough to support design insights. Comparisons
against lower variability service times (not shown) are more accurate: corresponding results for a
deterministic system are accurate to within a single queue position.

Figure 2 plots the 90th and 99th percentiles of queue length as a function of server utilization
in a system with five servers. The plots show that the approximation is accurate across a range
of utilization levels for both the zero-variability deterministic service distribution and the high-
variability hyperexponential distribution. These results are representative of those obtained for
systems with more than 5 servers.

M/G/c/k Drop Probability

Tijms proposed an approximation for the drop probability in M/G/c/k queues (Tijms, 1992):

f drop(c,k)≈
(1−ρ)

(
1−∑

k−1
j=0 π

(∞)
j

)
1−ρ

(
1−∑

k−1
j=0 π

(∞)
j

) (13)

where π
(∞)
j is the probability of j customers in the corresponding infinite-buffer queue and ρ =

λ/(c µ) is the per-server traffic intensity. This formula is exact for M/M/c/k and M/G/1/1 systems.
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(a) 70% server utilization
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Figure 1: Percentiles of queue length vs. servers, hyperexponential service times (v2
x = 20)
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(b) Hyperexponential (v2
x = 20)

Figure 2: 90th and 99th percentiles of queue length vs. server utilization, 5 servers

Because excess customers can be rejected by the system, the offered per-server load ρ can be
greater than 1 in M/G/c/k systems. However, because π

(∞)
j is only defined when the infinite-buffer

system is stable, (13) is only valid when ρ < 1.

We propose to use the M/G/c queue length approximation to obtain π
(∞)
j and equation (13) to esti-

mate the drop probability. Figures 3 and 4 validate this approach. Each figure plots the simulated
and approximated drop probabilities at 70% and 95% server utilization in systems with 1 and 5
servers. In the deterministic case (Figure 3), the approximation is consistently within 1% of the
simulated estimate. In the hyperexponential case (Figure 4), the largest error is only 3% and the
majority of points are within 1%.

M/G/c/k Average Residence Time

Recall that the average system throughput is given by Λ = (1− f drop(c,k))λ , which can now be
estimated using equation (13). Therefore, given an approximation for the average occupancy N,
we can determine the average residence time R using Little’s result, N = ΛR (Little, 1961). The



0 2 4 6 8 10
Buffer Length

0.0

0.1

0.2

0.3

0.4

0.5

E
st

im
a
te

d
 D

ro
p
 P

ro
b
a
b
ili

ty

Arrival rate = .70 (sim.)
Arrival rate = .70 (approx.)
Arrival rate = .95 (sim.)
Arrival rate = .95 (approx.)

(a) 1 server

0 2 4 6 8 10
Buffer Length

0.0

0.1

0.2

0.3

0.4

0.5

E
st

im
a
te

d
 D

ro
p
 P

ro
b
a
b
ili

ty

Arrival rate = 3.5 (sim.)
Arrival rate = 3.5 (approx.)
Arrival rate = 4.75 (sim.)
Arrival rate = 4.75 (approx.)

(b) 5 servers

Figure 3: Drop probability vs. buffer length, deterministic service times
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(b) 5 servers

Figure 4: Drop probability vs. buffer length, hyperexponential service times (v2
x = 20)

average system occupancy in the M/G/c/k system is, by definition,

N =
k

∑
j=0

j π j (14)

To estimate N, assume that the finite-buffer queue length probabilities are related to the corre-
sponding infinite buffer system by the scaling term q:

πn ≈
π
(∞)
n

1−qk+1 (15)

This approximation, which is exact for M/M/1/k, assumes that queue lengths in the M/G/c/k system
behave like a M/G/1/k system with service rate cµ . This is somewhat ad-hoc, but is reasonably
accurate if the buffer size is not too small.

Figures 5 and 6 compare the residence time predictions produced by this method to simulation
estimates in example systems with 1 and 5 servers; these results are representative of other server
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(b) 5 servers

Figure 5: Expected residence time vs. buffer length, deterministic service times
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Figure 6: Expected residence time vs. buffer length, hyperexponential service times (v2
x = 20)

configurations. The residence time approximation is accurate in both single-server systems, but has
moderate errors in multi-server systems with small buffers. For example, in the hyperexponential
system with 5 servers and one buffer space, the approximation predicts a residence time of 3.25 at
the 95% utilization level, compared to a simulated estimate of only 1.74. The accuracy improves
quickly as the buffer size increases, consistent with the observation that an M/G/c/k system with
large k behaves more like a single-server system from the perspective of customers in the queue.

AN EXAMPLE DESIGN PROBLEM

This section applies the results of the previous sections to an example design problem: the arrival
rate is λ = 100 customers per second; customers’ service is distributed according to a two-stage
hyperexponential distribution with v2

x = 20 and average service rate µ = 1; the required average
residence time is Rmax = 10; the cost of a buffer space β is normalized to 1.

Figure 7(a) plots the boundaries of the space of feasible system designs for three values of the
required throughput Λmin corresponding to loss rates of 1%, .1% and .01%, respectively. Increasing
the buffer length increases the rate of successfully served customers Λ because fewer customers
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Figure 7: Results for an example design problem

will be dropped, but increases R, since arriving customers must wait, on average, in a longer line.

The optimal configuration must be one of the points on the boundary of the feasible region, because
any point on the interior is strictly dominated by neighbor that also satisfies the constraints but
allocates fewer buffer spaces. Therefore, it is straightforward to find an optimal configuration by
using a binary search to find the minimum feasible buffer length for increasing numbers of servers
c. The search ends upon finding a configuration that satisfies the constraints using only servers and
no additional buffer space.

Figure 7(b) plots the estimated optimal solutions obtained by search for Λmin = 99.9 against in-
creasing values of the server cost α . The plot shows both the number of servers c in each config-
uration and the total system capacity k, which includes both servers and buffer space. When the
server cost is low, the optimal strategy is to simply allocate enough servers to meet the constraints
with no additional buffer space. As the server cost increases, the best configuration is one with
the minimum number of servers that can satisfy the residence time bound and the minimum buffer
length that satisfies the throughput requirement.

RELATED WORK

Given the analytical challenges of multi-server queues with non-exponential service times, there
is a long history of bounds and approximations for these systems; the result of Tijms (Tijms,
1992) is one example. Kimura provides a survey of several analytic approximations in multi-
server systems with both finite and infinite buffers in (Kimura, 1994). There is also a long history
of designing optimal allocation policies for queues in particular applications. A survey of classical
work on design and parameterization is (Crabill et al., 1977). In the context of this work, (Smith,
2007) is highly relevant. He investigates a collection of optimization problems for a system of
parallel M/G/c/k queues and proposes an alternate approximation for the drop probability, based
on a different result of Tijms, Tijms (1986), which interpolates between the blocking probabilities
for the M/D/1/k and M/M/1/k system. The resulting technique does not have a convenient closed
form expression, though it is suitable for numerical evaluation. Smith uses this approximation



to investigate the characteristics of several optimization problems that are similar to (3). The
approximations in this paper can be expressed conveniently in closed form, and have been validated
against both low- and high-variability service time distributions.

CONCLUSION

This work has presented a practical decision support framework for capacity planning problems in
multi-sever queues with finite storage capacity. The proposed framework combines a mathematical
programming formulation of the design problem with a set of novel two-moment approximations
for important measures in the M/G/c/k queue. Comparisons to simulation have shown that these
approximations are accurate for many systems of practical interest. There are several opportunities
for future projects in this area. In particular, we are interested in applying the two-moment approxi-
mations and decision support framework to real-world capacity planning problems and developing
an open-source software implementation.
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