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ABSTRACT 

 

In this study, a mathematical programming model is developed and then solved via dynamic 

programming to determine the optimal scheme of capacity allocation for advance and spot 

selling under uncertain aggregate demand for a service provider in a monopolistic environment.  

The impacts of four key parameters of the model upon the service provider’s optimal allocation 

scheme and profitability are numerically explored.  The computational results suggest that more 

capacity should be allocated to a segment if it exhibits lower intra-segment price sensitivity or  

higher inter-segment sensitivity. To enhance profitability, the service provider may not 

exhaustively allocate the total available capacity under certain circumstances. 

 

INTRODUCTION 
 

In many service industries, advance selling has become a common practice “that allows 

consumers to pre-order new to-be-released products before their release dates” (Zhao et al., 

2016).  Service providers engaging in e-commerce sell their service capacity to consumers not 

only at the time of consumption but also in advance.  Several notable studies are relevant to our 

paper in the context of yield management.  Lee and Ng (2001) analytically determine the optimal 

allocation of service capacity over a two-period planning horizon and corresponding pricing 

strategies for a monopolistic service provider.  Prasad et al. (2013) examine the advance selling 

price and inventory decisions in a two-period setting and find that an advance selling strategy “is 

contingent on parameters of the market (e.g., market potential and uncertainty) and the 

consumers (e.g., valuation, risk aversion, and heterogeneity).”  Based on a two-period model of 

advance selling in a market composed of experienced and inexperienced consumers, Zeng (2013) 

develops multiple pricing strategies for a typical retailer. 

 

Our paper is in the spirit of the studies by Lee & Ng (2001), Prasad et al. (2013), and Zeng 

(2013), but different in three significant ways. First, in our paper the market served by a 

monopolistic service provider is divided into two segments  the segment for advance selling 

and the other for spot selling.  The uncertain aggregate demand in each segment is assumed to 
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follow a uniform probability distribution. A linear bivariate demand function is employed to 

model the expected demand in each segment dictated by both the advance and spot selling prices. 

Second, a mathematical programming model is developed for the service provider to optimally 

allocate service capacity for advance and spot selling. Third, we numerically solve the 

mathematical programing model via dynamic programming (DP) and explore the impacts of four 

key parameters of the model upon the service provider’s optimal allocation scheme and 

profitability. 

 

In the next section, we formulate the profit functions and then develop a mathematical 

programming model to find the optimal allocation scheme of service capacity. A dynamic 

programing formulation to solve the mathematical programming model is presented in the third 

section.  The fourth section presents the results of a numerical study conducted to illustrate the 

application of the DP approach and examine the impacts of the four parameters. Finally, the 

paper concludes with a summary of its findings, managerial implications, limitations, and 

directions for future research in the fifth section.   

 

MODEL DEVELOPMENT 

Consider a monopolistic service provider, who allocates K identical units of service capacity for 

advance and spot selling given the prices that are already set for a single selling season. The 

market served by the service provider is divided into two segments: one composed of the 

consumers who purchase the service capacity in advance and the other of those who make their 

purchases at the time of consumption.   

 

The problems we intend to tackle in this paper can be stated as follows: (i) What is the optimal 

scheme of allocating service capacity for advance and spot selling so that the service provider’s 

expected total profit will be maximized? (ii) What are the impacts of the price-sensitivity 

parameters on the service provider’s optimal allocation scheme and profitability? 

 

The following basic assumptions are made to address the two strategic issues stated above:  

  

(i)  Both the advance and spot selling prices are exogenously given.  

(ii)  Consumers in the two-segment market are well aware of the advance and spot  

            selling prices charged by the service provider. 

(iii) The aggregate demand in each segment is affected by both the advance and spot   

            selling prices. 

 

To improve exposition, the segment for advance selling is denoted as Segment 1 and that for spot 

selling as Segment 2, respectively. Following Lee and Ng (2001), we only consider the case in 

which the service provider operates with a high fixed cost per unit, C, which is exogenously 

determined, and variable costs are sufficiently small to be ignored.  Several terms used to model 

the uncertain aggregate demand in each segment and formulate the profit functions are defined 

below: 

 

      Ki   the capacity available for allocation to Segment i (i = 1, 2); 

      yi   the capacity to be allocated to Segment i (a decision variable); 
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      Pi      the price per unit of capacity charged in Segment i (Pi > 0); 

      C      the cost per unit of capacity (C > 0);  

      di      the aggregate demand of consumers in Segment i; 

     i               the demand parameter in Segment i  ( 0i ); 

      )( ixf     the probability density function (p.d.f.) of di ; 

      E(di) the expected value of di ; 

      i      the retailer’s profit yielded from Segment i; 

      E(i)     the expected value of i; 

           the service provider’s total profit yielded from the entire market; 

      E() the expected value of  . 

 

Informed of the prices charged in both segments, consumers take the prices into consideration 

while making their purchases.  Hence, the uncertain demand in Segment i, di (i = 1, 2) can be 

modeled as a random variable following a probability distribution conditioned by P1 and P2.  The 

p.d.f. of di takes the form of )( ixf  if di is a continuous random variable.   

 

In Segment i (i = 1, 2), if the demand (di ) exceeds the capacity allocated to the segment (yi), the 

profit (i) will equal the profit per unit of capacity multiplied by the number of units sold.  On 

the other hand, if di is smaller than yi, a portion of the allocated capacity, yi – di, will be unsold 

and its cost stands for a loss of the service provider. Therefore, the profit yielded from Segment i 

(i = 1, 2) is expressed as 
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If di is a continuous random variable, the expected profit yielded from Segment i is derived from 

(1) as follows: 
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Following Azoury (1985), we model di as a random variable with a uniform probability 

distribution.  The p.d.f. of the demand in Segment i, di, is assumed to take on the following form: 
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where i > 0.  The expected demand in Segment i, based on (3), is given by 
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Expression (4) shows that the demand parameter, i,  equals twice the expected demand, E(di), 

and hence serves as an indicator of the aggregate demand in Segment i. 

 

Since a linear form of the demand function is extensively employed in theoretical and empirical  

studies (see Lee & Ng, 2001, for a review),  a bivariate linear model introduced by Huang et al. 

(2013) is chosen to represent the expected demand in Segment i (i = 1, 2), respectively: 

 

        2121111)( PPdE   ,                          (5) 

 

        1212222)( PPdE   ,                                     (6) 

 

where,  α1,  α2,  β1,  β2,  β12,  β21 > 0. 

 

Expression (5) reveals that the expected demand in Segment 1, E(d1), is decreasing in P1 but 

increasing in P2. In contrast, the expected demand in Segment 2, E(d2), is decreasing in P2 but 

increasing in P1 as noted in expression (6). These functional relationships could be found in 

service industries.  For example, given the advance selling price of a seat on a flight remaining 

unchanged, an increase in the spot selling price could lead more air travelers to purchase the 

flight tickets in advance. On the other hand, if the spot selling price is unchanged but the advance 

selling price keeps rising, more air travelers would likely purchase the last-minute tickets. 

 

For i = 1, 2, the constant αi captures the part of the demand in Segment i that does not vary with 

the prices; βi measures the price sensitivity of the demand in Segment i to changes in the price 

charged in the same segment, Pi.  A larger value of βi means that a one-unit increase (decrease) 

in Pi  causes a larger decrease (increase) in E(di).  β12 measures the price sensitivity of the 

demand in Segment 1 to changes in P2.  Similarly, β21  measures the price sensitivity of the 

demand in Segment 2 to changes in P1.  For i, j = 1, 2 and i ≠ j, a larger value of βij means that a 

one-unit increase (decrease) in Pj  causes a larger increase (decrease) in E(di).   

Based on expressions (4), (5) and (6), we obtain: 

 

 )(2 2121111 PP   ;                                  (7) 

 

 )(2 1212222 PP   .                                       (8) 

 

Substituting (3) into (2) and carrying out the integrations yield: 
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The derivations of expressions (9) and (10) are available from the first author upon request. 
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The service provider’s expected total profit from the  two-segment market can be expressed as 
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Given K identical units of service capacity, which is to be allocated during a single selling season 

in the two-segment market for advance and spot selling, we aim at finding the optimal capacity 

to be allocated to Segment i (i = 1, 2), yi
*, to maximize the service provider’s expected total 

profit.  Thus, the problem is formulated as follows: 
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     yi  0 for i = 1, 2.                  (12)  

 

 

DYNAMIC PROGRAMING FORMULATION 

 

The DP formulation developed for the mathematical programming model (12) consists of six 

elements: (i) the sequence of decision stages, (ii) the decision variable of each stage, (iii) the 

input state variable of each stage, (iv) the transition function linking the input and output state 

variables of each stage, (v) the return at each stage, and (vi) the recursive relationship, as shown 

in Figure 1. 

 

 
 

Each of the two market segments stands for a decision stage to which a certain capacity of the 

service is allocated. The two stages are indexed corresponding to the indices of the two segments 

described in the previous section.  
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The input state variable of stage i  is the capacity available for allocation at the beginning of the 

stage, iK  (i = 1, 2).  As shown in Figure 1, stage 1’s output state variable K2 stands for the input 

state variable of stage 2.  In particular, K3 is the output state variable of stage 2, which is the 

capacity unallocated for the purpose of maximizing the expected total profit. The capacity 

allocated to stage i, yi (i = 1, 2), is a decision variable. The transition function provides the 

linkage between the input and output state variables of a stage and the decision made for the 

stage, and may be expressed as 

 

              ),(1 iiii yKtK  , 

where,  

 KK 1 is given; 

 iii yKK 1 , i = 1, 2;              

ti(∙) is the symbol of ‘transition function of.’ 

 

Expressions (9) and (10) both show that the expected profit yielded from stage i (i.e., the return 

at stage i ), )( iE  , is determined by the decision variable yi, where yi  iK . Hence, )( iE  is a 

function of iK  and yi and can be expressed as )),(( iii yKE  .   

 

A backward induction process is employed to formulate the recursive relationship, which links 

the optimal decision in stage 1 to the optimal decision made in stage 2. Starting from stage 2, the 

recursive relationship is given by expressions (13) and (14). 

 

For stage 2, 

 

                                     

            (13) 

 

For stage 1, 

 

        

                      (14) 

 

 

where K2 = K1 – y1. 

 

The optimal solution to the DP model formulated above, yi
* (i = 1, 2), is a function of the input 

state variable iK  and hence can be expressed as )(
*
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NUMERICAL ILLUSTRATIONS 

 

A numerical study is presented in this section to (i) illustrate the application of the DP approach 

described in the previous section (ii) explore the impacts of the price-sensitivity parameters upon 

the service provider’s optimal allocation scheme and expected total profit. In the numerical 

experiments, we assume P1 < P2, implying that the advance selling price is set at a discount.  

 

For illustrative purposes, the following six cases of the price-coefficient vector (1, 2, 12, 21) 

associated with the two-segment market are considered in the experiments:  

 

Case 1a:  (1, 2, 12, 21) = (0.6,  0.3,  0.25,  0.25);  

Case 1b:  (1, 2, 12, 21) = (0.6,  0.3,  0.35,  0.25); 

Case 1c:  (1, 2, 12, 21) = (0.6,  0.3,  0.25,  0.35); 

Case 2a:  (1, 2, 12, 21) = (0.3,  0.6,  0.25,  0.25);  

Case 2b:  (1, 2, 12, 21) = (0.3,  0.6,  0.35,  0.25); 

Case 2c:  (1, 2, 12, 21) = (0.3,  0.6,  0.25,  0.35). 

 

As shown above, the value of 1 in Cases 1a, 1b, and 1c is twice the corresponding value in the 

other three cases. In contrast, the value of 2 in Cases 2a, 2b, and 2c is twice the corresponding 

value in the first three cases.  The impacts of the intra-segment price sensitivities, 1 and 2, are 

examined by comparing Case 1x with Case 2x, where x  {a, b, c}, in terms of the service 

provider’s optimal allocation scheme and expected total profit. 

 

Cases 1a and 2a are treated as the benchmark cases to explore the impacts of the inter-segment 

price sensitivities, 12 and 21.  To examine the impact of 12, we increase its value from 0.25 in 

the two benchmark cases to 0.35 in Cases 1b and 2b.  Similarly, to examine the impact of 21, we 

raise its value from 0.25 in the benchmark cases to 0.35 in Cases 1c and 2c. 

 

The values of the other model parameters are selected as follows: 

   

K = 1500 units;   1 = 1500,  2 = 2000;   P1 = $2000/unit,  P2 = $3000/unit;    

C = $1000/unit. 

 

To improve clarification, we here confine the decision variables yi to take nonnegative integer 

values. Given K units of capacity available for sale in the entire market, the domain of the 

decision variable yi (i = 1, 2) is uniformly discretized to take on the K+1 values, 0, 1, 2, …, K.  

The mathematical programming model (12) is solved through the DP formulation for all of the 

six cases discussed above. A computer program is developed by coding in C++ the recursive 

relationship characterized by expressions (13) and (14) and the backtracking procedure described 

in the third section. 

 

Table 1 reports the DP optimal allocation scheme yi
* (i = 1, 2), together with the expected total 

profit )(* E  for each of the six cases. For example, given the price-coefficient vector (1, 2, 

12, 21) = (0.6,  0.3,  0.25,  0.25) and the chosen values of the other model parameters, the 

optimal allocation scheme dictates that 480 units and 1020 units of the capacity should be  
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allocated to Segments 1 and 2, respectively.  As a result, the service provider’s expected total 

profit would be $1,325,196.40.  It is noted that the expected total profits in Cases 1a, 1b, and 1c 

are greater than those in the other three cases.   

 

 

Table 1.    Optimal allocation schemes and expected total profits in the six cases  

        of (1, 2, 12, 21) 

 

        y1
*   y2

*    )($)(* E  

 

Case 1a  480           1020           1325196.40 

Case 2a 825           467              879166.43 

 

Case 1b 540           960            1380000.00 

Case 2b 975           467              954166.43  

         

Case 1c  420           1080           1440000.00              

Case 2c 825           600            1012500.00        

 

 

 

 

Table 2.    Expected demands and unallocated capacities in the six cases of (1, 2, 12, 21) 

 

        E(d1)   E(d2)    
*

iyK  

 

Case 1a  525           800    0 

Case 2a 825           350     208 

 

Case 1b 675           800    0 

Case 2b 975           467            58   

        

Case 1c  525           900     0 

Case 2c 825           450    75 

 

 

As shown in Table 1, everything else being constant, more capacity should be allocated to a 

segment if its intra-segment price sensitivity is lower than that of the other segment (for example, 

see Case 1a vs. Case 2a).  However, as a segment’s inter-segment price sensitivity rises, the 

capacity allocated to the segment should be increased (for example, see Case 1a vs. Case 1b). 

 

The expected demands E(di) (i = 1, 2)  and the unallocated capacity  (i.e., 
*

iyK ) associated 

with the DP optimal allocation scheme in each case are shown in Table 2.  It is noted that given 

the chose model parameters, some quantity of capacity remains unallocated in Cases 2a, 2b and 

2c.   
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CONCLUSIONS 

 

This paper tackles the problem of optimally allocating K identical units of service capacity by a 

monopolistic provider for advance and spot selling under uncertain demand following a uniform 

probability distribution.  A mathematical programming model is developed and then solved via 

DP to determine the optimal allocation scheme. In addition, the impacts of the price-sensitivity 

parameters are numerically explored. Our computational results suggest that more capacity 

should be allocated to a segment if it exhibits lower intra-segment price sensitivity or  higher 

inter-segment sensitivity. To enhance profitability, the service provider may not exhaustively 

allocate the total available capacity under certain circumstances. 

 

There are several directions for future research.  First, this study provides numerical solutions to 

the problem of service capacity allocation under the demand following a uniform probability 

distribution.  A rather challenging direction for future research would be to determine the 

optimal allocation scheme for the demand following other probability distributions. Second, in 

this exploratory study we focus on a service provider in a monopolistic environment.  An 

interesting research direction would be to incorporate competition in the modeling framework. 

Third, treating advance and spot selling prices as decision variables could be another research 

direction.  
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