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Abstract 

Recent literature provides mixed empirical evidence with respect to the forecasting performance of 

ARFIMA and HAR models. This paper compares the forecasting performance of both models using high 

frequency data of 100 stocks representing 10 business sectors for the period 2000-2010. We allow for 

different sectors, changing market conditions, variation in the sampling frequency and forecasting 

horizons. For the overall sample and using the 300 sec sampling frequency, the forecasting performance 

of both models is indistinguishable. However, differences arise under different market regimes, 

forecasting horizons and sampling frequencies. ARFIMA models are superior for the crisis and pre-crisis 

sub-samples. HAR forecasts are less sensitive to regime change and to longer forecasting horizons. 

Variations in forecasting performance could also be explained by the level of persistence. 

 

Keywords: High-Frequency data • Market conditions • Market Sectors • Realised Variance • HAR • 

ARFIMA 

JEL Classification: C53 • C58 • G17 

  

mailto:mhassan@uno.edu


2 

 

1. Introduction 

Forecasting stock market volatility has long been and remains of interest to market traders and regulators. 

Given that financial risk is commonly assessed in terms of asset volatility, accurate volatility forecasts are 

desirable. Advances in computing and data technology make it possible to observe markets at very fine 

intervals of time. This has led to the introduction of so-called realised measures. Andersen et.al (2003) 

has shown that in the absence of microstructure noise, the realised variance calculated using high 

frequency data is a consistent estimator of the quadratic variation. Realised variance is now widely 

adopted owing to its desirable stylised facts and statistical properties which are superior to those 

parametric volatility measures generated from GARCH and Stochastic Volatility (SV) models. The 

superiority of the non-parametric realised variance is due to the utilization of information available at 

very fine intervals of time, which is lost at the lower frequencies at which GARCH and SV models 

operate. 

Irrespective of the model generating the underlying volatility series, all volatility measures share a 

number of stylized facts and distributional assumptions that distinguish them from other processes. For 

instance actual realisations of return volatility are unobserved and are characterized by long memory; see 

Bollerslev & Mikkelsen (1996); Ding, Granger, & Engle (1993); Ray & Tsay (2000). As such, most 

forecasting models tend to exploit the long-memory property to generate in/out-of-sample forecasts. 

Traditionally this has been done via long-memory models such FIGARCH and ARFIMA, given that 

ARIMA processes are often found inadequate to capture the long memory feature in a parsimonious way 

Andersen et.al (2000, 2001,2003); Bandi & Perron (2006); Beine, Laurent, & Lecourt (2003); Caporin, 

Rossi, & Magistris (2014). But long-memory models have certain drawbacks: they are nontrivial to 

estimate, mainly univariate and require a large sample size to obtain accurate estimates of the fractional 

differencing parameter. 

An alternative approach to long-memory modelling views the long memory feature of volatility the result 

of data aggregation, breaks and filtration: see Hyung et.al (2008); Wang and Yen, (2016) among others. 

This line of modelling has been stimulated by many factors. For instance, most observed processes are not 

pure fractional indicative of the presence of short-memory. Moreover, if the aggregation level is small 

relative to the lowest frequency of the model, then scaling laws do not apply, and short and long-memory 

features become hard to distinguish and model. LeBaron (2001) shows that the summation of short 

memory models with lags as low as three can generate memory patterns that are hyperbolic in nature. 

Building on these ideas, Müller et al., (1997) and subsequently Corsi, (2009) proposed the heterogeneous 

autoregressive model (HAR), which is capable of approximating the long memory features of the data and 

respond to short-term shocks; hence providing superior fitting and forecasting performance. The superior 

performance of the HAR in forecasting realised volatility is noted in Andersen et.al (2007); Andersen 

et.al (2011); Bollerslev et. al (2016) and Patton & Sheppard (2009) among others. Compared to 

ARFIMA, HAR models are more trivial to estimate and forecast from. Despite the numerous studies in 

volatility forecasting using a wide array of models and specifications, see for example Andersen et al., 

(2007, 2011); Brownlees, Engle, & Kelly (2011); Clements, Galvão, & Kim (2008); Corsi (2009); 

Fuertes, Izzeldin, & Kalotychou (2009); Scharth & Medeiros (2009). The question of how the HAR 

stacks up to the ARFIMA forecasts remains unaddressed.  
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The paper compares the forecasting performance of ARFIMA and HAR models allowing for variations 

in: i) business sector type; ii) market conditions; iii) forecasting horizons and iv) sampling frequencies. 

We use 100 stocks representing 10 distinctive business sectors for the period (2000-2010). Business 

sectors are heterogeneous in nature which leads to variations in stylised facts and responses to economic 

turmoil. This variation in our sample  

As a preview to our results, we find the forecasting performance of both models is similar for the full 

sample and at sampling frequency of 300sec for the realised variance. Nevertheless, as the sampling 

frequency increases (60sec and above), ARFIMA forecasts take the lead. Crisis adversely affects the 

forecasting performance of HAR to a lesser extent. ARFIMA generates superior forecasts for both the 

pre-crisis and crisis regimes. Forecasts generated by both models are sensitive to the sampling frequency: 

at the benchmark sampling frequency of 300sec the HAR outperforms the ARFIMA. HAR forecasts are 

less sensitive to regime change and to longer forecasting horizons. 

The paper is structured as follows. Data are presented in Section 2, Section 3 outlines the methodology, 

Section 4 presents the empirical results and Section 5 concludes. 

2. Data Description 

The sample period is 02/01/2000 to 12/31/2010 with a total of 2767 trading days observed at the tick 

level. Our data is obtained from Tick Data.1 Data cleaning and filtration techniques are explained in the 

Tick Data website.2 This makes our results easier to authenticate and replicate. We use trade data for 100 

stocks from 10 business sectors: Consumer Discretionary (CD), Consumer Staples (CS), Energy (ENG), 

Financial (FIN), Health Care (HC), Industrials (IND), Information Technology (IT), Materials (MAR), 

Telecommunications (TEL) and Utilities (UTL). We consider stocks with the highest market 

capitalization within their representative sector. The sample range and sector coverage allow us to 

examine the sensitivity of the forecasting performance of our models across different market regimes and 

heterogeneous (in terms of volatility and liquidity) business sectors. 

We use transaction prices sampled at the 300sec (5min) to construct returns and realized variance. The 

common use of this sampling frequency strikes a balance between information gain from high frequency 

data and microstructure effects; see Andersen et al. (2001, 2010). For robustness, we consider alternative 

sampling frequencies of 5, 15, 60, 150, 900 and 1800 seconds. Since persistence, microstructure noise and 

leverage are known to affect the forecasting performance, irrespective of the adopted model, and that the 

impact of these factors tends to vary with the sampling frequency. Hence, it is paramount to consider 

those sampling frequencies.     

The main quantity of interest is the daily realised variance. To define the daily realised variance, the time 

dimension is discretized and each day is divided into 𝑀 equally-spaced subintervals of length 𝛿. For 

instance for 𝛿 = 5𝑚𝑖𝑛, we have 𝑀 = 78 intraday returns obtained by dividing the number of seconds in 

the trading day by the sampling frequency (i.e. 23400/300). A few trading days consist of 𝑀 < 78 owing 

to delayed openings and/or early closings of the NYSE. The price at the start of the 𝑗𝑡ℎ intraday interval is 

                                                           
1 Tick Data is a data base provides data on a commercial basis for futures, Index and equity markets. Tick Data is sourced from NYSE's TAQ 
(Trade and Quote) database. Tick adjusts the TAQ database for ticker mapping, code filtering, price splits and dividend payments. 
2 https://www.tickdata.com/ 
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computed as the average of the closing and opening prices of intervals 𝑗 − 1 and 𝑗, respectively. The 𝑗𝑡ℎ 

intraday return (on day 𝑡) is then computed as: 

 𝑟𝑡,𝑗 = 100 (
ln(𝑝𝑡,𝑗

𝑐 ) + ln(𝑝𝑡,𝑗+1
𝑜 )

2
−

ln(𝑝𝑡,𝑗−1
𝑐 ) + ln(𝑝𝑡,𝑗

𝑜 )

2
) , 𝑗 = 2, … , 𝑀 − 1 (1)  

 

where each trading day [09:30am-16:00pm], and 𝑝𝑡𝑗
𝑐 , 𝑝𝑡𝑗

𝑜  are the closing and opening prices of the 𝑗𝑡ℎ 

intraday interval respectively. For instance, 𝑗 = 2 corresponds to 09:35am-09:40am. The realized 

variance 𝑅𝑉𝑡 is defined as the sum of intraday returns and is given by: 

 𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑗
2

𝑀

𝑗=1

, 𝑡 = 1, … , 𝑇 (2)  

 

As 𝑀 →  ∞, the realized variance converges to quadratic variation of the process.  

Table 1 outlines the tickers of the 100 stocks adopted in this study alongside their degree of market 

activity as measured by trading volume. Citigroup is the most active, and BT the least active, among all 

the 100 stocks considered. Table 2 provides descriptive statistics for daily returns, trading volume and 

realised variance by sectors. The IT and UTL sectors are the most/least active as measured by trading 

volume. Volatility as measured by the realised variance shows that the CS and FIN sectors are the 

least/most volatile sectors. Volatility across sectors features long memory as evident by the estimates of 

the fractional differencing parameter 𝑑.  

[Table 1 here] 

[Table 2 here] 

3. Methodology 

In this section, we outline our forecasting models by their underlying specifications. The two contenders 

are the long memory specification ARFIMA and the short memory specification HAR. In all cases the 

models are fitted to the natural log of realised volatility following Andersen et al., (2007).  

Andersen et al., (2003); Areal & Taylor (2002); Bollerslev & Wright (2001); Deo, Hurvich, & Lu (2006); 

Granger & Joyeux (1980); Koopman, Jungbacker, & Hol (2005); Martens, De Pooter, & van Dijk (2004); 

Martens & Zein (2004); Oomen, (2001, 2004); Pong, Shackleton, Taylor, & Xu (2004); Thomakos & 

Wang (2003) highlight the long memory property of volatility and advocated that volatility persistence is 

better captured by ARFIMA type of models. An ARFIMA(p, d, q) is given by: 

 

 𝜑(𝐿)(1 − 𝐿)𝑑(𝑅𝑉𝑡 − 𝜇) = 𝜃(𝐿)휀𝑡 (3)  

 

where 𝜑(𝐿) = 1 − ∑ 𝜑𝑖𝐿𝑖𝑝
𝑖=1  and 𝜃(𝐿) = 1 − ∑ 𝜃𝑗𝐿𝑗𝑞

𝑗=1  are the AR and MA lag polynomials accounting 

for the short-memory properties, whereas the long-memory properties are captured by the fractional 
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differencing parameter 𝑑 and 휀𝑡 is the error which is distributed as 𝑁(0, 𝜎𝑢
2). In our framework, the 

Autoregressive (AR) and Moving Average (MA) components are set to zero (𝑝 = 𝑞 = 0), hence allowing 

only for the long memory feature to be in effect.  

Equally there is evidence on the capacity of the HAR model to approximate the long memory property of 

the volatility, see Andersen et al., (2007); Bollerslev et al., (2016); Corsi, 2009) and references therein. 

Our HAR model specification follows that of Corsi (2009), which is given by: 

 𝑅𝑉𝑡 = 𝑐 + 𝛽(𝑑)𝑅𝑉𝑡−1 + 𝛽(𝑤)𝑅𝑉𝑡
(𝑤)

+ 𝛽(𝑚)𝑅𝑉𝑡
(𝑚)

+ 휀𝑡 (4)  

 

where 휀𝑡~𝑖𝑖𝑑(0, 𝜎2), and weekly 𝑅𝑉𝑡
(𝑤)

 and monthly 𝑅𝑉𝑡
(𝑚)

 realised measures are respectively given by: 

 𝑅𝑉𝑡
(𝑤)

=
1

5
(𝑅𝑉𝑡−1

(𝑑)
+ 𝑅𝑉𝑡−2

(𝑑)
+ 𝑅𝑉𝑡−3

(𝑑)
+ 𝑅𝑉𝑡−4

(𝑑)
+ 𝑅𝑉𝑡−5

(𝑑)
) (5)  

 𝑅𝑉𝑡
(𝑚)

=
1

22
(𝑅𝑉𝑡−1

(𝑑)
+ 𝑅𝑉𝑡−2

(𝑑)
+ ⋯ + 𝑅𝑉𝑡−21

(𝑑)
+ 𝑅𝑉𝑡−22

(𝑑)
) (6)  

 

The notion behind the inclusion of weekly and monthly components in the HAR model is to 

accommodate market participants with different investment horizons, typically short (1 day), medium (1 

week) and long (1 month), who may differ in how they perceive and react to volatility. The incorporation 

of the long lag structure is akin to a restricted AR (22), is capable of reproducing the long memory feature 

of realized volatility as evidenced in Corsi, (2009) and Andersen et al., (2007).  

3.1 Forecasting Calibration and Evaluation Criterion 

The description of our forecasting exercise is based on our baseline set up (see figure 1); i.e., using the 

full sample with realized volatility sampled at the 300sec (5min) and the forecasting target being the 1d-

ahead.  

[Figure 1 here] 

The total sample size is  𝑇 + 1. We use the last 𝑃(𝑃 = 500) observations as a holdout evaluation period. 

The first 𝑅 (𝑅 = 2267) observations are used for the initial model estimation which generates a vector 𝛽 

of regression parameters. Under a rolling forecasting scheme, the 𝛽s are always estimated from a sample 

of size 𝑅. The first estimation window ranges from 1 to 𝑅, while volatility forecasts are generated for 𝑅 +

1. The second estimation window ranges from 2 to 𝑅 + 1, while forecasts are generated for 𝑅 + 2. The 

last estimation window ranges from 𝑃 to 𝑇, while forecasts are generated for 𝑅 + 𝑃 = 𝑇 + 1.The initial, 

full sample estimation period is 2/1/2000 – 7/1/2009 while the forecasting covers the period 8/1/2009 – 

31/12//2010. At every iteration, the 1-day-ahead volatility forecast ℎ𝑡
2 is compared to the population 

volatility measure 𝜎𝑡
2. The population volatility measure is the 𝑅𝑉𝑡 given its unbiased nature (Patton, 

2011). The precision of the forecasts is assessed using two commonly used forecast evaluation criteria: 

the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE), see Andersen et al., (2011) 

and Patton (2011) among others. Both criteria are expressed in percentage terms as follows. 
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 𝑀𝐴𝐸 =
1

𝐵
∑| �̂�𝑡

2 − ℎ𝑡
2|

𝐵

𝑏=1

 ×  100 (7)  

 𝑅𝑀𝑆𝐸 = √
1

𝐵
∑(�̂�𝑡

2 − ℎ𝑡
2)2

𝐵

𝑏=1

×  100 (8)  

where 𝐵 denotes the number of the rolling forecasts. 

To evaluate the impact of market conditions on forecasting performance we split the sample into two 

periods: pre-crisis and crisis. The period up to the end of 2005 is representative of pre-crisis and the 

forecasting is conducted as the baseline set up described earlier. As such, the pre-crisis forecasting is 

conducted in the period 2004-2005, while the crisis forecasting in the period 2007-2009. To evaluate the 

impact of forecasting horizons on both ARFIMA and HAR, we adjust our baseline set up for the cases of 

5d-ahead and 22d-ahead forecasts as representative of 1-week and 1-month respectively. To gauge the 

sensitivity of the models to the sampling frequency, we used Realised variance sampled at various 

frequencies, namely 5, 15, 60, 150, 300, 900 and 1800 seconds.  

 

4. Empirical Results 

In this section, we present the results of our forecasting exercise. We begin by comparing the forecasting 

performance of the two models across the 10 sectors. We then compare the sensitivity of the models’ 

forecasts to market conditions (pre-crisis/crisis). In a subsequent section, we evaluate the impact of 

forecasting over extended horizons. The impact of sampling frequency is reported thereafter.  

 

A. Sectors 

Figure 2 reports the forecast performance of the two competing models (ARFIMA and HAR) applied to 

the 100 stocks. Table 3 shows that the RMSE and MAE for the ARFIMA are 23.60% and 18.05% 

respectively, while for the HAR they are 23.63% and 18.04%, which shows that the performance of both 

models is at par. 

[Figure 2 around here] 

Table 3 also reports the average MAE and RMSE for both ARFIMA and HAR by sectors. Performance-

wise, the sector analysis does not reveal a definite winner as ARFIMA is surpassed by HAR only for 4 

out of the 10 sectors (ENG, IT, MAR and UTL). 

[Table 3 around here] 

Both ARFIMA and HAR provide similar ranking classification for all sectors, with the exception of IND 

and UTL sectors. Moreover, both models rank ENG and HC as the best/worst forecasted sectors. In 

general, the ranking classification of both models is highly aligned as evidenced by the Spearman rank 

correlation coefficient which shows a strong positive correlation between the sectorial rankings.  

B. Market Conditions 
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Table 4 reports the percentage MAE for each of the 10 business sectors and their corresponding ranks for 

both the pre-crisis and crisis regimes. The table delivers a number of important findings.  

First, ARFIMA reports lower MAEs relative to HAR at both the sector level and for the average. This 

contrasts with the full sample results where the models performances were highly aligned. However, and 

unlike the case for the full sample, both models deliver different rankings of the forecasting performance 

across sectors. 

Second, forecasting performance across all sectors deteriorates during crisis as both ARFIMA and HAR 

models, on average, show higher MAEs in the crisis period. Exceptions are the CD, ENG and UTL 

sectors with all featuring improved forecasting performance under both the ARFIMA and HAR models 

specification. The increase in the MAEs is more marked in the case of ARFIMA which records an 

average increase of around 2.7% as opposed to 0.7% for the HAR. This shows the HAR model 

specification to be less sensitive to regime change. The relative sensitivity of the ARFIMA forecasts to 

regime change can be attributed to the instability of the fractional differencing parameter 𝑑, since high 

volatility persistence can lead to pronounced spikes in future volatility which may in turn adversely 

impact the forecasts, see Maekawa & Xinhong, (2011) and Syczewska, (2011).3  

Third, the 𝑑 estimates are higher in the crisis as opposed to the pre-crisis regime and with variation across 

the two regimes are rather asymmetric across the sectors. For instance, the FIN sector features the worst 

forecasting performance and the highest negative  percentage change in 𝑑 (%∆ 𝑑 = -18.24) whereas the 

ENG sector reports gains in forecasting performance and reports the highest positive change in 𝑑 (%∆ 𝑑 

= 19.19). This finding matches those of the Earlier literature, see Andersen & Bollerslev, (1998) and 

Dufrenot, Guegan, & Peguin-Feissolle (2008), which highlighted the link between volatility changes and 

long memory during regime change. Our results here adds another dimension by outlining the association 

between the observed changes in the fractional parameter 𝑑's and changes in forecasting performance as 

measured by  the MAEs.  

Fourth, the standard deviation of forecast evaluation criteria is lower during the crisis than to the pre-

crisis period. This is plausible given that during episodes of distress, stock price movements become more 

aligned as investors share common beliefs on the market’s direction. Conversely during periods of 

tranquillity, investor sentiment is primarily driven by idiosyncratic information, leading to a wider spread 

of beliefs.  

In summary, we find that the forecasting performance of ARFIMA models is more sensitive to regime 

change; however, ARFIMA reports lower MAEs when viewed at the sector level. This applies for both 

the pre-crisis and crisis regimes. 

[Table 4 around here] 

[Figure 3 around here] 

C. Forecasting Horizons 

                                                           
3 Long-memory models have generally been found to be sensitive to structural breaks. Related to this, Granger & Joyeux, (1980) 

distinguish between genuine and spurious long memory processes where in the former case the property is inherent in the series, 

while in the latter it is caused by structural breaks. Several aspects of structural breaks and the long memory property of a series 

have been investigated by Granger & Terasvirta (1999) and Gourieroux & Jasiak (2001) among others. 
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Table 5 reports the average MAEs for all sectors at 3 different horizons: the short-term (1d), the medium-

term (5d) and the long-term (22d-ahead) forecasts. The RV measure adopted in this exercise is based on 

the 300 sec sampling frequency. Results obtained shows that ARFIMA (1d[18.05], 5d[18.71], and 22d[ 

20.08]) and HAR (1d[18.04], 5d[18.08], and 22d[18.06]) compare well at the 1d ahead forecasts but 

deviate when the forecasting horizon is varied. ARFIMA forecasts drop by 3.5% for 5d-ahead and 10.6% 

for 22d-ahead forecasts compared to HAR forecasts which drop by 0.22% and 0.11% respectively for the 

5d-ahead and 22d-ahead forecasts. The sensitivity of the ARFIMA model to changes in the forecasting 

horizon can also been seen in the variation of the ranking of sectors. In contrast, HAR based ranking of 

sectors features little or no change across the different horizons.  

Figure 4 shows the relative gain/loss by sectors between the 1d and 22d forecasting horizons. ARFIMA 

forecasts deteriorate across all sectors where the maximum loss is observed in the FIN sector. HAR 

forecasting performance drops for all sectors with the exception of the IND and FIN sectors where gains 

are observed. The superiority of the HAR model in the medium and long horizons are in line with Corsi 

(2009) who highlighted the stability of the HAR model across different forecasting horizons.  

 [Table 5 around here] 

[Figure 4 around here] 

D. Sampling Frequency 

The impact of varying the sampling frequencies is shown in Table 6, where there is clear tendency for the 

forecasting performance to vary with sampling frequency. This is true for both the ARFIMA and HAR 

model specifications. Also notable, is the differentiated impact of the sampling frequency on the two 

models. For instance, the ARFIMA outperforms the HAR at sampling frequencies higher than 150sec a 

result significant at the 5% level.4 By contrast, the HAR significantly outperforms the ARFIMA for 

sampling frequencies lower than 150sec, including the literature benchmark of 300sec.Taking the average 

across the different frequencies shows that HAR outperforms ARFIMA. The fractional differencing 

estimator tends to increase with the sampling frequency, and might, in part, explain the superior 

performance of the ARFIMA at the higher end of the sampling frequencies.  

The impact of the sampling frequency is further revealed by Figures 5a and 5b. Panel “a” shows an 

increasing tendency for the MAE to rise with the sampling frequency. Panel “b” shows the percentage 

gain in forecasting performance compared to the benchmark of 300sec for both ARFIMA and HAR.   

[Figure 5 around here] 

[Table 6 around here] 

Our findings clearly highlight the impact of the sampling on the forecasting performance of the models 

under investigation. This is in with existing literature, which documents gains in forecasting from using 

realised volatility sampled at higher frequencies; see for example Martens, (2001) and Andersen et al., 

(2007). In specific, Patton & Sheppard (2009) conclude that forecasting performance of realised volatility 

                                                           
4 The Kruskal-Wallis Singed Rank Test is suitable in this context forecasts of 100 stocks based on two models (ARFIMA and 

HAR) are compared against a common benchmark.  
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peaks at a sampling frequency of 60 seconds. Our result here shows such peak is achieved at the 5 sec as 

evident by the lower MAEs achieved under both models. 

Our results above applies for the 100 stocks’ but given the multi-sector dimension of our data makes it a 

worthwhile exercise to examine the various sectors forecasting gains/losses with respect to the changes in 

the sampling frequency. Figures 6a and 6b outline the frequency gains/losses by sector. For example, 

relative to the widely adopted 300 sec benchmark, an increase of the sampling frequency from 300sec to 5 

sec, leads to gains in all sectors, with highest forecasting gains attained by the IT sector (68.6% for HAR 

and 71.6% for ARFIMA) whereas the lowest forecasting gains are observed for the UTL sector (29.5% 

for HAR and 30.8% ARFIMA). Differences in forecasting gains across sectors could be attributed to 

factors such as the level of activity of the sector, market capitalization, as well as to variations in 

persistency levels. For instance, the IT (UTL) sectors have the highest (lowest) market capitalisation, the 

most (least) active by volume of traded shares and the most (least) persistent as measured by the 

fractional differencing parameter. 

[Figure 6 around here] 

5. Conclusion 

Forecasting return volatility has always been of interest to policy makers and practitioners. Such interest 

has increased, especially amidst the recent global financial crisis. The advent of high frequency data has 

spurred the development of realised volatility measures that have dominated the use of parametric 

models. Forecasting models utilising realised volatility aims to exploit the observed persistence in 

volatility either via long-memory formulations or, more recently, with short-memory models capable of 

approximating the hyperbolic decay in the autocorrelation function. Perhaps the most commonly 

referenced model of this sort is the HAR model, popularised by Corsi (2009). Although the HAR has 

been widely adopted due to its convenience in estimation, a formal comparative study with the ARFIMA 

is lacking.  

In this paper we compare the forecasting performance ARFIMA and HAR across a variety of scenarios. 

In specific, we assess the impact of market conditions, forecasting horizons and sampling frequency on 

the models forecasting performance. Our inferences are drawn from high frequency stock data comprising 

100 stocks from 10 business sectors over the period 2000 – 2010. 

Forecasting using both models is sensitive to sector type, regime change, the degree of persistence and the 

sampling frequency. The Energy sector offers the best forecasts while Health care sector ranks worst. The 

ARFIMA model is more sensitive to variations in market regimes. The long memory differencing 

parameter is sensitive to changes in both the market regime and the sampling frequency and affects the 

forecasting performance of both models. HAR forecasts are more stable across forecasting horizons as 

evident by the little or no change of the sector rankings. Higher sampling frequency leads to 

improvements in forecasting performance and this is verified by both ARFIMA and HAR models for all 

business sectors. ARFIMA outperforms the HAR for the sampling frequencies below 150sec. Conversely, 

sampling frequencies of at least 300sec are better suited for a HAR model. Both models generate the best 

forecasts using realised variance based on the 5 sec sampling frequency. Our findings refute the notation 

of a definite winner and highlight the merits underlying both models. 
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Table 1. Sector-wise list of 100 stocks 

Stock Name Ticker Volume Stock Name Ticker Volume Stock Name Ticker Volume Stock Name Ticker Volume Stock Name Ticker Volume 

Consumer Discretionary (CD) Consumer Staples (CS) Energy (ENG) Financials (FIN) Health Care (HC) 

Amazon.com Inc AMZN 7.895 Wal-Mart WMT 12.014 ExxonMobil XOM 16.606 Wells Fargo WFC 22.247 Johnson & Johnson JNJ 8.806 

McDonald's MCD 6.186 Procter & Gamble PG 8.590 Chevron Corporation CVX 7.521 JPMorgan Chase JPM 20.185 Pfizer PFE 28.251 

Walt Disney DIS 8.887 Coca-Cola KO 6.657 Occidental Petroleum OXY 4.465 Citigroup Inc. C 111.497 Merck MRK 9.839 

The Home Depot HD 11.387 PepsiCo Inc. PEP 4.852 Halliburton Co. HAL 11.727 Bank of America BAC 59.480 Abbott Laboratories ABT 4.972 

Time Warner Inc. TWX 6.749 Unilever UL 0.610 Devon Energy Corp DVN 3.314 Goldman Sachs Group GS 6.802 United Health Group UNH 8.145 

Marriott Int'l. MAR 2.710 Costco  COST 4.268 Baker Huges BHI 3.541 American Express AXP 7.345 Amgen Inc AMGN 8.867 

Gap (The) GPS 6.397 Kimberly-Clark KMB 1.851 Chesapeaks Energy CHK 7.251 Morgan Stanley MS 10.399 Medtronic Inc MDT 4.817 

News Corporation NWSA 6.753 Estee Lauder Cos. EL 1.240 Williams Cos. WMB 4.572 The Bank of New York Mellon BK 4.656 Gilead Sciences GILD 10.475 

Interpublic Group IPG 3.750 
Brown-Forman 

Corp. 
BFB 0.309 Sunoco Inc. SUN 2.184 Travelers TRV 2.514 Humana Inc. HUM 1.628 

Best Buy Co. Inc. BBY 6.025 Avon Products AVP 2.858 TECO Energy TE 1.311 Allstate Corp ALL 3.155 Boston Scientific BSX 8.832 

Average Trading Volume 

 
6.670 Average   4.320 Average   6.250 Average   24.830 Average 

 
9.460 

Industrials (IND) Information Technology (IT) Materials (MAR) Telecommunications Services (TEL) Utilities (UTL) 

General Electric GE 38.335 Apple Inc. AAPL 20.871 DuPont DD 4.445 AT&T T 14.646 The Southern Company SO 2.661 

United Technologies UTX 4.413 Microsoft MSFT 58.939 Freeport-McMoran FCX 6.307 Vodafone Group Plc (ADR) VOD 3.451 Exelon Corp. EXC 2.892 

United Parcel Service UPS 3.010 IBM IBM 6.775 Newmont Mining NEM 5.509 Verizon Communications VZ 9.583 Duke Energy DUK 5.114 

Minnesota Mining & Mfg Co MMM 3.683 Oracle Corp. ORCL 39.187 Dow Chemical DOW 5.883 Telefonica S.A. (ADR)  TEF 0.453 American Electric Power AEP 1.964 

Caterpillar CAT 5.833 Intel Corp. INTC 57.647 Alcoa AA 11.115 American Tower Corp A AMT 2.480 Public Serv. Enterprise Inc. PEG 2.220 

Boeing BA 4.429 Cisco Systems CSCO 56.347 International Paper IP 3.626 BT Group plc (ADR) BT 0.119 PG&E Corp. PCG 1.818 

Honeywell Int'l Inc. HON 4.298 Hewlett-Packard HPQ 12.321 Nucor Corp. NUE 4.186 CenturyTel Inc  CTL 1.201 Progress Energy, Inc. PGN 1.020 

General Dynamics GD 2.088 EMC Corp. EMC 19.749 Weyerhauser Co WY 4.152 Sprint Nextel Corp S 18.150 Entergy Corp. ETR 1.134 

Cummins Inc. CMI 2.700 Dell Inc. DELL 22.782 
United States Steel 

Corp. 
X 5.022 Frontier Communications FTR 2.466 Constellation Energy Group CEG 1.250 

Southwest Airlines LUV 5.084 Xerox Corp. XRX 5.908 AK Steel Holding Corp AKS 3.230 Qwest Communication Int Q 13.300 ONEOK OKE 0.545 

Average Trading Volume   7.390 Average   30.050 Average   5.350 Average   6.580 Average   2.060 

Notes: The table reports the 100 stocks traded in the US equity market, along with tickers and volume that are featured in our analysis. 
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Table 2. Summary Statistics by Sectors 

 

CD CS ENG FIN HC IND IT MAR TEL UTL 

 

% Daily Returns (𝑹𝒕) 
 

Mean 0.032 0.050 -0.037 -0.029 -0.001 -0.001 0.015 -0.088 -0.027 0.011 

S.D. 2.297 1.449 2.301 2.488 1.932 1.842 2.328 2.510 2.158 1.722 

Skew 0.166 0.132 -0.697 -0.192 0.030 -0.053 0.175 -0.186 -0.030 -0.785 

Kurt 12.506 8.964 20.780 16.455 7.999 7.633 8.485 8.019 13.283 27.297 

 

Trading Volume (𝒗𝒐𝒍𝒕 × 𝟏𝟎−𝟕) 
 

Mean 6.674 4.325 6.249 24.828 9.462 7.387 30.564 5.347 6.585 2.062 

S.D. 2.678 1.806 3.296 38.161 3.984 5.375 8.471 4.005 4.711 1.018 

Skew 1.18 1.877 1.617 2.641 1.519 3.663 1.108 1.615 1.684 1.636 

Kurt 4.893 8.953 8.348 11.024 6.788 28.916 6.087 5.965 7.358 7.672 

Ranking  5 9 7 2 3 4 1 8 6 10 

 

Realized Variance (𝑹𝑽𝒕) 
 

Mean 5.455 2.453 5.836 6.339 4.245 3.696 5.722 6.703 5.637 3.419 

S.D. 7.100 2.913 9.250 17.207 4.660 5.111 6.787 9.499 9.721 13.239 

Skew 7.440 5.183 8.681 11.436 4.918 8.352 3.648 8.620 8.961 31.670 

Kurt 111.077 50.947 118.145 198.683 56.216 139.260 24.865 123.691 140.262 1267.273 

𝒅𝟑𝟎𝟎 𝒔𝒆𝒄 0.329 0.330 0.433 0.424 0.352 0.394 0.401 0.424 0.317 0.354 

Ranking 6 10 3 2 7 8 5 1 4 9 

Notes: The table reports mean, standard deviation (S.D.), skewness (Skew), Kurtosis (Kurt) for Daily returns, Trading volume, Realized variance. The 

Robinson's d for long-memory of the volatility series is denoted as d. The statistics are for the full sample 2001-2010.  
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Table 3. Full Sample  

Sector MAE RMSE 

 
ARFIMA rank HAR rank ARFIMA rank HAR rank 

CD 17.26 2 17.31 2 22.35 2 22.44 2 

CS 18.38 8 18.42 8 24.56 8 24.61 8 

ENG 16.96 1 16.84 1 22.17 1 22.04 1 

FIN 19.16 9 19.12 9 24.82 9 24.94 9 

HC 19.16 10 19.16 10 25.36 10 25.40 10 

IND 18.02 6 18.13 7 23.54 7 23.69 7 

IT 17.77 3 17.74 3 23.32 4 23.34 4 

MAR 17.84 4 17.82 4 22.97 3 22.94 3 

TEL 17.86 5 17.84 5 23.36 5 23.39 5 

UTL 18.06 7 18.05 6 23.51 6 23.46 6 

Average 18.05 
 

18.04 
 

23.60 
 

23.63 
 

S.D. 1.35 
 

1.39 
 

1.99 
 

2.05 
 

𝝆 0.99*** 0.99***  

Notes: Table reports Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) in percentage terms for the 1-day-ahead volatility forecasts. A 

500-day rolling window has been used and the statistics reported here are averages for the 10 sectors. The ARFIMA (0,d,0) is used where the order of 
differencing is estimated. S.D. denotes the Standard Deviation of the forecast evaluation measures across the 100 stocks. ρ is the bi-variate Spearman rank 

correlation of ARFIMA vis-à-vis HAR. ***, **, * denote the 1, 5 and 10% significance level respectively. 1(10): best (worst) forecast. 
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Table 4. Forecasting and Market Conditions. 

 
Panel A: Pre-Crisis Panel B: Crisis Panel C: Percentage Changes (%Δ) 

 

ARFIMA  rank  HAR rank 𝒅𝟑𝟎𝟎 𝒔𝒆𝒄 ARFIMA  rank HAR  rank 𝒅𝟑𝟎𝟎 𝒔𝒆𝒄 ARFIMA HAR 𝒅𝟑𝟎𝟎 𝒔𝒆𝒄 

CD 11.47 8 19.57 9 0.36 11.30 6 18.75 4 0.42 -1.50 -4.37 14.42 

CS 11.27 6 18.98 4 0.41 12.01 9 19.86 8 0.37 6.16 4.43 -10.48 

ENG 11.42 7 19.34 7 0.36 10.85 2 18.09 1 0.44 -5.25 -6.91 19.19 

FIN 10.05 2 18.22 1 0.40 11.62 8 21.07 10 0.34 13.51 13.53 -18.24 

HC 12.32 10 20.56 10 0.42 12.51 10 20.39 9 0.39 1.52 -0.83 -6.12 

IND 10.70 4 18.7 3 0.40 10.90 3 18.68 3 0.41 1.84 -0.11 2.44 

IT 9.84 1 18.62 2 0.44 10.26 1 18.56 2 0.42 4.09 -0.32 -5.00 

MAR 11.70 9 19.06 5 0.38 11.62 7 18.99 5 0.42 -0.69 -0.37 10.14 

TEL 11.01 5 19.46 8 0.37 11.04 4 19.29 6 0.41 0.27 -0.88 8.80 

UTL 10.44 3 19.24 6 0.38 11.27 5 19.70 7 0.36 7.37 2.34 -5.51 

Average 11.02   19.17 
 

0.39 11.34   19.34   0.40 2.73 0.65 0.96 

S.D. 1.63 
 

1.83 
 

 

1.16 
 

1.52 
  

   𝝆 -0.35 
 

-0.23 
 

 

-0.47 
 

-0.89 
  

   Z 2.497** 
 

1.27 
 

 

— 
 

— 
  

   Notes: The table reports Mean Absolute Error (MAE) in percentage terms for the 1-day-ahead volatility forecasts. A 500-day rolling window has been used and the statistics reported here are averages 

for the 10 sectors. The ARFIMA (0,d,0) is used where the order of differencing is estimated. S.D. denotes the Standard Deviation of the forecast evaluation measures across the 100 stocks. ρ is the bi-
variate Spearman rank correlation of Volatility (see Table 1) vis-à-vis the rankings of the models. Z denotes the Wilcoxon Signed Rank test statistic for the equality of ranks test between pre-crisis 

(Panel A) and crisis (Panel B) periods. Panel C shows percentage changes in the MAEs of the ARFIMA and HAR models as well as the long-memory parameter (d) between the pre-crisis and crisis 

periods. ***, **, * denote the 1, 5 and 10% significance level respectively. 1(10): best (worst) forecast. 
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Table 5. Forecasting and Extended Horizons. 

 1-day ahead 5-day ahead 22-day ahead 

 MAE Rank MAE Rank MAE Rank 

ARFIMA 

CD 17.26 2 17.97 2 19.59 3 

CS 18.38 8 18.89 8 20.16 7 

ENG 16.96 1 17.73 1 19.09 1 

FIN 19.16 9 20.34 10 22.00 10 

HC 19.16 10 19.66 9 20.93 9 

IND 18.02 6 18.79 7 20.21 8 

IT 17.77 3 18.28 3 19.52 2 

MAR 17.84 4 18.50 6 19.95 6 

TEL 17.86 5 18.46 4 19.73 5 

UTL 18.06 7 18.47 5 19.64 4 

Average   18.05  18.71  20.08  

S.D. 1.35  1.46  1.62  

ρ —  0.95***  0.88***  

HAR 

CD 17.31 2 17.35 2 17.36 2 

CS 18.42 8 18.48 8 18.50 8 

ENG 16.84 1 16.87 1 16.92 1 

FIN 19.12 9 19.14 9 18.89 9 

HC 19.16 10 19.22 10 19.25 10 

IND 18.13 7 18.18 7 18.03 6 

IT 17.74 3 17.77 3 17.80 4 

MAR 17.82 4 17.86 4 17.79 3 

TEL 17.84 5 17.91 5 17.94 5 

UTL 18.05 6 18.04 6 18.09 7 

Average   18.04  18.08  18.06  

S.D. 1.39  1.40  1.38  

ρ —  1.00***  0.99***  

Notes: Table reports Mean Absolute Error (MAE) in percentage terms for the 1d-ahead, 5d-ahead and 22d-ahead volatility forecasts. A 500-

day rolling window has been used and the statistics reported here are averages for the 10 sectors. The ARFIMA(0,d,0) is used where the order 

of differencing is estimated. S.D. denotes the Standard Deviation of the forecast evaluation measures across the 100 stocks. ρ is the bi-variate 
Spearman rank correlation where 1d-ahead is the baseline. ***, **, * denote the 1, 5 and 10% significance level respectively. 1(10): best 

(worst) forecast. 
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Table 6: Forecasting and Sampling Frequency. 

 Sampling 

Frequency 
𝒅 HAR (MAE)  ARFIMA (MAE) KW Best performer 

5 sec 0.391 11.190 11.160 2.441** ARFIMA 

15 sec 0.389 12.380 12.340 3.128*** ARFIMA 

60 sec 0.381 14.380 14.350 2.568*** ARFIMA 

150 sec 0.370 15.920 15.920 0.155 — 

300 sec 0.377 18.040 18.050 6.628*** HAR 

900 sec 0.345 22.750 22.880 6.066*** HAR 

1800 sec 0.326 27.590 27.860 7.495*** HAR 

Average   0.368 17.464 17.509 
 

HAR 

Notes: The table shows the impact of the sampling frequency on the forecasting performance of ARFIMA and HAR 

models. KW is the Kruskal-Wallis Signed Rank test statistic to test for significant differences between the models 

across the various sampling frequencies. ***, **, * denote the 1, 5 and 10% significance level respectively. 
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Figure 1. Forecasting Schematic. 

 
Notes: The schematic corresponds to the initial, full sample, 1d-ahead volatility forecast. 
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Figure 2. Models Performance for Full Sample. 

 
Notes: Figure 2 displays the overall average forecasting performance for the 100 stocks for ARFIMA and HAR using the 

MAE and RMSE loss criterion functions. 
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Figure 3. Forecasting Performance and Market Conditions. 
a) Forecasting Evaluation Criteria b) Pre-Crisis Rankings 

  
c) Relative % MAE Gain (Pre-crisis to Crisis) d) Post-Crisis Rankings 
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Figure 4. Relative % MAE Gain (1d to 22d). 
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Figure 5. Forecasting Performance and Sampling Frequency. 
a) Forecasting Evaluation Criteria 

 
b) Relative % MAE Gain (baseline: 300sec) 
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Figure 6. Forecasting Gains by Frequency and Sector. 
a) ARFIMA 

 
b) HAR 
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